In typical labs this semester, you’ll be working on a number of problems. You are encouraged to work with one or two others. You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure space to discuss algorithm design. However, it will be common to have some overlap between lab exercises and homework sets.

Note: If you do not feel fully confident when it comes to asymptotics, induction, or proofs, I strongly encourage you to focus on the initial two problems first.

1. **Induction.** Using induction, show that the following summations hold for all $n \geq 0$.
 - $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.
 - $\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$.
 - For all positive $c \neq 1$, $\sum_{k=0}^{n} c^k = \frac{c^{n+1} - 1}{c - 1}$.

2. **Asymptotic analysis.** Assume you have functions f and g such that $f(n)$ is $O(g(n))$. For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
 - (a) $\log_2(f(n))$ is $O(\log_2(g(n)))$.
 - (b) $2^{f(n)}$ is $O(2^{g(n)})$.
 - (c) $(f(n))^2$ is $O((g(n))^2)$.
 - (d) If $g(n)$ is $O(h(n))$, then $f(n)$ is $O(h(n))$.
 - (e) $g(n)$ is $\Omega(f(n))$.

3. **More asymptotic analysis.** Assume you have functions f, g, and h. For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
 - (a) If f is $\Omega(g)$ and g is $\Omega(h)$, then f is $\Omega(h)$.
 - (b) If f is $O(h)$ and g is $O(h)$, then $f+g$ is $O(h)$.
 - (c) If f is $O(h)$ and g is $O(h)$, then $f \cdot g$ is $O(h)$.
 - (d) If f is not $O(g)$, then g is $O(f)$.

4. **Pseudocode.** On the first day of the semester, you saw the following pseudocode for Dijkstra’s Algorithm, which finds the shortest path in a graph G between a start vertex s and any other vertex.
Dijkstra(G, s, ℓ)
1 \(S = \{s\} \).
2 \(d[s] = 0 \).
3 \textbf{while} \(S \neq V \)
4 \hspace{1em} \text{pick} \ v \in V \setminus S \text{ to minimize} \ \min_{e=(u,v):u \in S} d[u] + \ell_e.
5 \hspace{1em} \text{add} \ v \ \text{to} \ S.
6 \hspace{1em} d[v] = d[u] + \ell_e
7 \text{Return} \ d[\ldots].

(a) This pseudocode is high-level pseudocode. One reason why this is high-level is because it doesn’t specify how to compute the edge \(e = (u, v) \) such that \(u \in S \) that minimized \(d[u] + \ell_e \). Identify two other reasons why this is high-level pseudocode.

(b) Give low-level pseudocode for Dijkstra’s algorithm. Don’t worry about proving correctness or showing runtime analysis. Instead just focus on the pseudocode.