CS41 Lab 11

November 2018

This week, we've been discussing ways to classify problems according to their difficulty, using the notions of polynomial-time reductions and polynomial-time verifiers. In this lab, you'll develop more sophisticated polynomial-time reductions using gadgets.

Below is a synopsis of relevant decision problems for this lab.

- Independent-Set. The input for Independent-Set is a graph $G=(V, E)$ and an integer k. Output YES iff G has an independent set of size at least k.
- Sat. The input for Sat is a set of n boolean variables x_{1}, \ldots, x_{n} and m clauses c_{1}, \ldots, c_{m}, where each clause is the OR of one or more literals ${ }^{1}$ e.g. $c_{i}=x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{17}$. Output YES iff there is a truth assignment to x_{1}, \ldots, x_{n} that satisfies every clause.
- 3-Sat. The input for 3-Sat is the same as for SAT, except that each clause is the or of exactly three literals.
- Three-Coloring. The input for Three-Coloring is a graph $G=(V, E)$. Output yes iff the vertices can be colored using three colors such that each edge has different-colored endpoints.

1. Show that $3-\mathrm{Sat} \leq_{\mathrm{P}}$ SAT.
2. Show that 3 -Sat \leq_{P} Independent-Set. Hint: Given an input $x_{1}, \ldots, x_{n}, c_{1}, \ldots, c_{m}$ for 3-SAT, create an input graph $G=(V, E)$ on $3 m$ vertices as follows:
(a) For each clause $c_{i}=\ell_{i, 1} \vee \ell_{i, 2} \vee \ell_{i, 3}$, create three vertices $v_{i, 1}, v_{i, 2}, v_{i, 3}$. Add edges between each pair of vertices in each clause.
(b) For each variable x_{i}, add an edge between any pair of vertices that represent x_{i} and \bar{x}_{i}. For example, if $c_{i}=x_{1} \vee x_{2} \vee x_{3}$ and $c_{j}=x_{6} \vee \bar{x}_{1} \vee \bar{x}_{3}$, then add edges $\left(v_{i, 1}, v_{j, 2}\right)$ and $\left(v_{i, 3}, v_{j, 3}\right)$.

If the 3 -SAT instance is a YES instance, what is the size of the largest independent set in G ? What if the 3 -SAT instance is a No input?
3. In the third exercise, you will reduce 3 -SAT \leq_{P} Three-Coloring. Before getting there, it will be helpful to create some interesting three-colorable graphs. In all of the following exercises, you are to create a three-colorable graph (say the colors are red, blue, green) with certain special properties. The graphs you create should include three vertices marked a, b, c but can (and often will) include other vertices. Except for the properties specified, these vertices should be unconstrained. For example, unless the problem states that e.g. a cannot be red, it must be possible to color the graph in such a way that a is red. (You may fix colors for other vertices, just not a, b, c, and not in a way that constrains the colors of a, b, c.)
(a) Create a graph such that a, b, c all have different colors.

[^0](b) Create a graph such that a, b, c all have the same color.
(c) Create a graph such that a, b, c do $N O T$ all have the same color.
(d) Create a graph such that none of a, b, c can be green.
(e) Create a graph such that none of a, b, c are green, and they cannot all be blue.
4. Show that 3 -Sat \leq_{p} Three-Coloring. (Hint: Associate the color red with True and the color blue with False.)
5. Show that Sat $\leq_{\mathrm{p}} 3$-Sat.

[^0]: ${ }^{1}$ A literal is either a boolean variable x_{i} or its negation \bar{x}_{i}.

