CS41 Lab 10: Polynomial-Time Verifiers and Polynomial-Time Reductions

This week, we’ve started to understand what makes some problems seemingly hard to compute. In this lab, we’ll consider an easier problem of verifying that an algorithm’s answer is correct.

Recall that a decision problem is a problem that requires a YES or NO answer. Alternatively, we can describe decision problem as a set \(L \subseteq \{0, 1\}^* \); think of \(L \) as the set of all \(\text{YES} \) inputs i.e., the set of inputs \(x \) such that one should output \(\text{YES} \) on input \(x \). Let \(|x| \) denote the length of \(x \), in bits.

1. Polynomial-time Verifiers. Call \(V \) an efficient verifier for a decision problem \(L \) if

 (a) \(V \) is a polynomial-time algorithm that takes two inputs \(x \) and \(w \).

 (b) There is a polynomial function \(p \) such that for all strings \(x \), \(x \in L \) if and only if there exists \(w \) such that \(|w| \leq p(|x|) \) and \(V(x, w) = \text{YES} \).

 \(w \) is usually called the witness or certificate. Think of \(w \) as some proof that \(x \in L \). For \(V \) to be a polynomial-time verifier, \(w \) must have size some polynomial of the input \(x \). For example, if \(x \) represents a graph with \(n \) vertices and \(m \) edges, the length of \(w \) could be \(n^2 \) or \(m^3 \) or \((n + m)^{100} \) but not \(2^n \).

 Give polynomial-time verifiers for the following problems, none of which are known to have polynomial-time algorithms.

 (a) **Three-Coloring.** Given \(G = (V, E) \) return \(\text{YES} \) iff the vertices in \(G \) can be colored using at most three colors such that each edge \((u, v) \in E \) is bichromatic.

 (b) **SAT.** Recall the input for SAT is a set of boolean variables \(x_1, \ldots, x_n \) along with \(m \) clauses \(c_1, \ldots, c_m \), where each clause is the OR of one or more literals e.g.,

 \[
 c_j = x_1 \lor \overline{x}_2 \lor \cdots \lor \overline{x}_{k-1} \lor x_k,
 \]

 where \(\overline{x}_i \) represents the negation of \(x_i \).

 Output \(\text{YES} \) iff there exists a truth assignment that satisfies every clause.

 (c) **Factoring.** Given numbers \(n, k \) written in binary, output \(\text{YES} \) iff \(n \) is divisible by \(d \) for some \(1 < d \leq k \).

 (d) **Not-Factoring.** Given numbers \(n, k \) written in binary, output \(\text{YES} \) iff \(n \) is NOT divisible by \(d \) for any \(1 < d \leq k \).

 Hint: The following problem is solvable in polynomial time.\(^1\)

 Primes: Given a number \(n \) written in binary, output \(\text{YES} \) iff \(n \) is a prime number.

2. Independent-Set and Vertex-Cover. Given a graph \(G = (V, E) \), an independent set is a set of vertices \(W \subseteq V \) such that no edges exist between vertices in \(W \); i.e., such that \((u, v) \notin E \). A vertex cover is a set of vertices \(W \subseteq V \) such that for all edges, at least one endpoint is in \(W \); i.e., for all \((u, v) \in E \) we have \(u \in W \) or \(v \in W \).

 Here are two decision problems on graphs:

\(^1\)This actually wasn’t known until 2002, when Agrawal, Kayal, and Saxena created the AKS primality test. Kayal and Saxena were undergraduates at IIT Kanpur at the time; Agrawal was their advisor.
• **INDEPENDENT-SET** takes an undirected graph \(G = (V, E) \) and integer \(k \) and returns yes iff \(G \) contains an independent set of size at least \(k \).

• **VERTEX-COVER** takes an undirected graph \(G = (V, E) \) and integer \(k \) and returns yes iff \(G \) contains a vertex cover of size at most \(k \).

(a) Show that \(\text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \).

(b) Show that \(\text{VERTEX-COVER} \leq_p \text{INDEPENDENT-SET} \).

(c) Give polynomial-time verifiers for **INDEPENDENT-SET** and **VERTEX-COVER**.

3. Consider the following decision variant of the Subset Sum problem we saw a few weeks ago. **SUBSET-SUM** takes \(n \) integers \(w_1, \ldots, w_n \) and an integer \(W \) and outputs yes iff there exists a subset of \(\{w_1, \ldots, w_n\} \) that adds up to precisely \(W \).

(a) Give a polynomial-time verifier for **SUBSET-SUM**.

(b) Show that \(\text{VERTEX-COVER} \leq_p \text{SUBSET-SUM} \).