
CS41 Homework 8

This homework is due at 11:59PM on Sunday, November 4. Write your solution using LATEX. Submit this
homework using github as a .tex file. This is a partnered homework. You should primarily be discussing
problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific details
of a solution, nor should you show your written solution to anyone else. The only exception to this rule is
work you’ve done with a lab partner while in lab. In this case, note (in your README file) who you’ve
worked with and what parts were solved during lab.

1. Find the missing integer (CLRS 4-2) Suppose n = 2k − 1 for some k.

An array A[1 . . . n] contains all the integers from 0 to n except one. Each integer from 0 to n is
represented as a k-bit string. It would be easy to determine the missing integer in O(n) time by using
an auxiliary array B[0 . . . n] to record which numbers appear in A. Unfortuantely, we cannot access
an entire integer in A with a single operation. Because the elements of A are represented in binary,
the only operation we can use to access them is “fetch the jth bit of A[i]”, which takes constant time.
This means that reading every digit of every number in A would take O(nk) = O(n log n) operations.

In this problem, we’ll develop an efficient divide and conquer algorithm that identifies the missing
integer, using only O(n) operations.

(a) If one number x is missing, it must be the case that either x < n/2 or x ≥ n/2. Describe how to
figure out which of these is true using only O(n) operations.

(b) After you figure out whether x < n/2 or x ≥ n/2, which bit(s) of x do you know?

(c) Define the sets:
Asmall = {y ∈ A | y < n/2}

Abig = {y ∈ A | y ≥ n/2}

We’d like to use the insight from part (1a) to intelligently decide which elements to put in Abig

and which to put in Asmall. This will be our preprocessing step to set up the “divide” part of our
divide and conquer algorithm. Describe a way to keep track of which entries of A belong to either
Asmall and Abig, using only O(n) work.

(d) Put together the two parts above into an algorithm that recurses on either Asmall or Abig. Part
(1c) should help you determine your “divide” step, and part (1b) should help you determine how
to “combine” the recursive return value with new information to figure out x.

Describe your algorithm with low-level pseudocode.

(e) Write a recurrence for the runtime of this algorithm and solve it using partial substitution.

2. Counting significant inversions (K&T 5.2)

Recall the problem of finding the number of inversions between two rankings. As we saw, we are given
a sequence of n numbers a1, a2, . . . , an, which we assume are all distinct, and we define an inversion to
be a pair of indices i < j such that ai > aj .

We previously used counting inversions as a good measure of how different two orderings are. However,
one might feel that this measure is too sensitive. Let’s call a pair a significant inversion if i < j and
ai > 2aj . Give an O(n log n) algorithm to count the number of significant inversions.

3. Database queries (K&T 5.1)

You are interested in analyzing some hard-to-obtain data from two separate databases. Each database
contains n numerical values (so there are 2n values total). You’d like to determine the median of this
set of 2n values, defined as the n-th smallest value.

1

The only way you can access these values is through queries to the databases. In a single query, you
can specify a value k to one of the two databases, and the chosen database will return the k-th smallest
value it contains. Since queries are expensive, you would like to compute the median using as few
queries as possible.

(a) Design an algorithm that finds the median value using at most O(log n) queries. Full pseudocode
is not necessary, but you must clearly explain how it works, and you must handle all edge cases
(e.g., do not assume that n is even).

(b) Prove that your algorithm correctly returns the median.

(c) Prove that your algorithm uses only O(log n) queries.

4. (extra challenge) Divide and conquer for minimum spanning trees (V2.0)

In lab, we considered a divide-and-conquer approach to the minimum spanning tree problem, with the
rough outline that the algorithm:

• Divides the graph into two pieces, G1 = (V1, E1) and G2 = (V2, E2). (V1 ∪ V2 = V and V1 and V2

are disjoint. |V1| and |V2| are each roughly half of |V |. E1 is the edges in E with both endpoints
in V1, and E2 is the edges in E with both endpoints in V2.)

• Recursively finds the MSTs M1 for G1 and M2 for G2.

• Finds the lowest-weight edge e = (u, v) with u ∈ V1 and v ∈ V2.

• Returns the minimum spanning tree M1 ∪M2 ∪ {e}.

In lab, your group came up with an example weighted, connected input graph G and a particular
execution so that the algorithm did not return a minimum spanning tree of G.

Is it possible to “patch” this algorithm to work, if the vertex partition is chosen cleverly? That is, can
we do a little bit of conquering before the divide step(s), which will make this divide-and-conquer MST
algorithm work?

If yes, then describe how to fix this divide and conquer algorithm to be correct. If no, then argue
why no rule for dividing G can make the algorithm correct.

2

