CS41 Homework 3

This homework is due at 11:59PM on Sunday, September 23. Write your solution using $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. Submit this homework using github as a file called hw3.tex. This is an individual homework. It's ok to discuss approaches at a high level. In fact, we encourage you to discuss general strategies. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you've done with a lab partner while in lab. In this case, note who you've worked with and what parts were solved during lab.

1. Asymptotic analysis, specifics. Arrange the following functions in ascending order of growth rate. That is, if g follows f in your list, then it should be the case that $f=O(g)$.

- $f_{1}(n)=n^{2.8}$
- $f_{2}(n)=6 n+10$
- $f_{3}(n)=n^{2} \log (n)$
- $f_{4}(n)=10^{n}$
- $f_{5}(n)=100^{n}$
- $f_{6}(n)=2^{2^{n}}$
- $f_{7}(n)=\sqrt{4 n}$

No proofs are necessary.
2. Asymptotic analysis, generalized. For these problems, your example functions should have domain and range \mathbb{N}.
(a) Show that if $f(n)$ is $\Omega(g(n))$ and $g(n)$ is $\Omega(h(n))$, then $f(n)$ is $\Omega(h(n))$.
(b) Give a proof or counterexample: If $f(n)$ is not $O(g(n))$, then $g(n)$ is $O(f(n))$.
(c) Let k be a fixed constant and suppose that f_{1}, \ldots, f_{k} and h are functions such that $f_{i}=O(h)$ for all i.
i. Let $g_{1}(n):=f_{1}(n)+\ldots+f_{k}(n)$. Is $g_{1}=O(h)$? Prove or give a counterexample. If you give a counterexample, give an alternate statement that best captures the relationship between the two functions.
ii. Let $g_{2}(n):=f_{1}(n) \cdot \ldots \cdot f_{k}(n)$. Is $g_{2}=O(h)$? Prove or give a counterexample. If you give a counterexample, give an alternate statement that best captures the relationship between the two functions.
3. Close to sorted. Say that a list of numbers is " k-close-to-sorted" if each number in the list is less than k positions from its actual place in the sorted order. (So a 1-close-to-sorted list is actually sorted.) Give an $O(n \log k)$ algorithm for sorting a list of numbers that is k-close-to-sorted.

In your algorithm, you may use any data structure or algorithm from CS35 by name, without describing how it works.
4. (extra challenge problem) For these problems, your distinct example functions should have domain and range the positive integers \mathbb{N}.

- Find (with proof) a function f_{1} such that $f_{1}(2 n)$ is $O\left(f_{1}(n)\right)$.
- Find (with proof) a function f_{2} such that $f_{2}(2 n)$ is not $O\left(f_{2}(n)\right)$.
- Find (with proof) a function f_{3} such that $f_{3}\left(2^{n}\right)$ is $O\left(f_{3}(n)\right)$.

5. (extra extra challenge problem) Define a function $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that $f=O(g)$ for all exponential functions g, but f is not $O(h)$ for any polynomial function h.
