CS41 Homework 12: approximation

This homework is due at 11:59PM on Tuesday, December 11. Write your solution using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. Submit this homework using github as a .tex file. This is a partnered homework. You should primarily be discussing problems with your homework partner.

It's ok to discuss approaches at a high level with others. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you've done with a lab partner while in lab. In this case, note (in your README file) who you've worked with and what parts were solved during lab.

1. Reductions and approximations. Recall that many problems have a decision version and an optimization version, so for example we can consider the problems

- Independent-Set (G, k) returns yes iff there is an independent set in G of size $\geq k$,
- Max-Independent-Set (G) returns the size of the largest independent set in G,
- Vertex- $\operatorname{Cover}(G, k)$ returns yes iff there is a vertex cover of G of size at most k,
- Min-Vertex-Cover (G) returns the size of the smallest vertex cover of G,
- Clique (G, k) returns yes iff there is a clique in G of size k, and
- Max-Clique (G) returns the size of the largest clique ${ }^{1}$ in G.

We know that all NP-Complete problems reduce to each other. It would be nice if this meant that an approximation algorithm for one NP-COMPLETE problem can be adapted easily into an equally good approximation algorithm for any other NP-COMPLETE problem.
(a) In class, we have seen many polynomial-time reductions for decision problems, and you have used them to show that several problems are NP-Complete. In this problem, you will attempt to use similar reductions to create new approximation algorithms.
Our first reduction in class showed that Independent-Set \leq_{p} Vertex-Cover. Given an algorithm VC-alg for Vertex-Cover, we created the following algorithm for Independent-Set:

IS-ALG $(G=(V, E), k)$:
$1 \quad k^{\prime}:=n-k / /$ where $n=|V|$
$2 z=\operatorname{VC-ALG}\left(G, k^{\prime}\right)$.
3 return z.
Now, suppose we want an approximation algorithm for MAX-Independent-Set that uses a 2approximation algorithm VC-Approx for Min-Vertex-Cover. What should your algorithm for Max-Independent-Set do? Given the output from VC-Approx, what should your Max-INDEPENDENT-SET algorithm output? What kind of approximation guarantee can you give?
Design and analyze an approximation algorithm for Max-Independent-Set. Either prove a formal guarantee for the approximation ratio of your algorithm, or give concrete evidence why that ratio is impossible (or at least hard to calculate).
(b) Assume we have an k-approximation algorithm for Max-Clique where k is a constant. Can we use this to construct a decent approximation algorithm for Max-Independent-Set? Justify your answer by designing an approximation algorithm for MAX-INDEPENDENT-SET, and either proving an approximation ratio or explaining why this ratio is hard to calculate.

[^0]
2. Three-Coloring, approximated.

Recall the Three-Coloring problem: Given a graph $G=(V, E)$, output yes iff the vertices in G can be colored using only three colors such that the endpoints of any edge have different colors. In labs 10 and 11, we proved that Three-Coloring is NP-Complete. In this problem, we'll consider an approximation algorithm for the optimization version of Three-Coloring.
Let Three-Coloring-OPT be the following problem. Given a graph $G=(V, E)$ as input, color the vertices in G using at most three colors in a way that maximizes the number of satisfied edges, where an edge $e=(u, v)$ is satisfied if u and v have different colors.
Give a polynomial-time (3/2)-approximation algorithm for Three-Coloring-OPT. Your algorithm must satisfy at least $2 c^{*} / 3$ edges, where for an arbitrary input $G=(V, E), c^{*}$ denotes the maximum number of satisfiable edges. Prove that your algorithm achieves this approximation ratio.
3. (Kleinberg and Tardos, 11.9). Given disjoint sets A, B, C and a set $T \subseteq A \times B \times C$, a 3d matching is a subset $M \subseteq T$ such that each element of $A \cup B \cup C$ appears at most once. The 3D-MATching problem is to find the largest 3 d matching given sets A, B, C, and T.
Give a polynomial-time 3-approximation algorithm for 3D-MATChing.

4. (extra challenge) Optimization vs Decision Problems.

Let B be an arbitrary optimization problem, and let A be the decision version of B.
(a) Does it always hold that $B \leq_{\mathrm{P}} A$? Answer YES or NO. Justify your response.
(b) Does it always hold that $A \leq_{\mathrm{P}} B$? Answer Yes or NO. Justify your response.

5. (extra challenge) Coloring with not too many colors.

Suppose we're somehow told that a graph is three-colorable. Could that help us color the graph? In this problem, you'll shoot for a different kind of approximation. Give a polynomial time deterministic algorithm that, given any three-colorable graph $G=(V, E)$, colors the graph using $O(\sqrt{n})$ colors. Note that the endpoints of each edge must be different colors, and you're given that it is possible to color the graph using just three colors, but you don't know what the coloring is.
Here are a few hints to help you along:
(a) First, give a simple greedy algorithm that, given a graph $G=(V, E)$ such that each vertex has at most d neighbors, colors G using only $d+1$ colors.
(b) Second, recall the algorithm for deciding if a graph is bipartite.
(c) Third, start coloring the three-colorable graph taking the vertex with the most neighbors, and coloring those neighbors using just two colors.
6. (extra challenge) Good approximations of TSP.
(a) Show that the triangle inequality assumption is necessary to achieve the 2-approximation for METRIC-TSP. Specifically, show that if there is a polynomial-time approximation algorithm for the general TSP with $\rho(n)=O(1)$, then $\mathrm{P}=\mathrm{NP}$. (Hint: Use contradiction. Show that we could use such an algorithm to solve VERTEX-COVER in polynomial-time.)
(b) Show how in polynomial time we can transform one instance of TSP into an instance of METRICTSP. The two instances must have the same set of optimal tours.
(c) Why does the polynomial-time transformation in part (6 b) not contradict the fact proven in part (6a)?

[^0]: ${ }^{1} \mathrm{~A}$ clique is a set of nodes $C \subseteq V$ such that every two vertices $u, v \in C$ are connected by an edge: $\{u, v\} \in E$.

