This week, we’ve been discussing ways to classify problems according to their difficulty (“computa-
tional complexity”), using the notions of polynomial-time reduction, polynomial-time verifier, and
NP-completeness. In this lab, we’ll look at two NP-COMPLETE problems.

 Recall that to show a problem $A \in$ NP-COMPLETE, it suffices to:

 - Prove that $A \in$ NP.
 - Choose a problem B known to be NP-COMPLETE.
 - Reduce $B \leq_p A$.

During this lab, focus initially on the reductions, and not the formal proofs.

1. Show that 3-Sat \in NP-COMPLETE, by reducing from Sat. Given an instance X of Sat (i.e.,
a list of n variables and m clauses), you should create an instance Y of 3-Sat (i.e., a list of n'
variables and m' clauses, each clause having three literals) such that $Y \in$ 3-Sat iff $X \in$ Sat.

2. In the third exercise, you will show that Three-Coloring is NP-COMPLETE. Before getting
there, it will be helpful to create some interesting three-colorable graphs. In all of the following
exercises, you are to create a three-colorable graph (say the colors are red, blue, green) with
certain special properties. The graphs you create should include three vertices marked a, b, c
but can (and often will) include other vertices. Except for the properties specified, these
vertices should be unconstrained. For example, unless the problem states that e.g. a cannot
be red, it must be possible to color the graph in such a way that a is red. (You may fix colors
for other vertices, just not a, b, c, and not in a way that constrains the colors of a, b, c.)

 (a) Create a graph such that a, b, c all have different colors.
 (b) Create a graph such that a, b, c all have the same color.
 (c) Create a graph such that a, b, c do NOT all have the same color.
 (d) Create a graph such that none of a, b, c can be green.
 (e) Create a graph such that none of a, b, c are green, and they cannot all be blue.

3. Show that Three-Coloring \in NP-COMPLETE.
 (Hints: reduce from 3-Sat. Associate the color red with TRUE and the color blue with FALSE.)