1. Making change with strange coins. Consider the problem of making change for \(n \) cents out of the fewest number of coins. You previously designed a greedy algorithm that gave optimal solutions for US and European coins, but also found counterexamples where the greedy algorithm doesn’t give an optimal solutions.

(a) Design a dynamic programming algorithm that takes as input the amount of change to make, \(n \), and a list of coin denominations, \(c_1, \ldots, c_k \). If it is possible to make \(n \) cents in change using denominations \(c_1, \ldots, c_k \), your algorithm should output the smallest number of coins required. Otherwise, your algorithm should output \text{FAIL}.

(b) How would you need to modify your algorithm to also output the coins used to make optimal change?

2. Polynomial-time Verifiers. Call \(V \) an efficient verifier for a decision problem \(L \) if

- \(V \) is a polynomial-time algorithm that takes two inputs \(x \) and \(w \).
- There is a polynomial function \(p \) such that for all strings \(x, x \in L \) if and only if there exists a certificate string \(w \) such that \(|w| \leq p(|x|) \) and \(V(x, w) = \text{yes} \).

The following problems are not known to have polynomial-time algorithms. For each problem describe a polynomial-time verifier (and the corresponding certificates).

(a) **Three-Coloring.** Given \(G = (V, E) \) return \text{yes} iff the vertices in \(G \) can be colored using at most three colors such that for every edge \(e = (u, v) \) in \(E \), \(u \) and \(v \) have different colors.

(b) **Wedding-Planner.** Recall in the Wedding planner problem, the input consists of a list of \(n \) people to possibly invite to a wedding, along with \(m \) clauses, where each clause specifies some criteria for whom to invite or not invite. Output \text{yes} iff there exists an invitation list that satisfies all clauses.

Note: Assume that each clause is of the form e.g. \(x_1 \lor \bar{x}_2 \lor \cdots \lor \bar{x}_k \), where \(x_i \) means to invite person \(i \), and \(\bar{x}_j \) means to not invite person \(x_j \).

(c) **Independent-Set** Given an undirected graph \(G = (V, E) \) and integer \(k \) and returns \text{yes} iff \(G \) contains an independent set of size at least \(k \). An independent set is a set of vertices with no edges between them: \(W \subseteq V \), and \(u, v \in W \Rightarrow (u, v) \notin E \).

(d) **Vertex-Cover** takes an undirected graph \(G = (V, E) \) and integer \(k \) and returns \text{yes} iff \(G \) contains a vertex cover of size at most \(k \). A vertex cover is a set of vertices such that every edge has at least one end in the set: \(W \subseteq V \), and \(\forall (u, v) \in E, u \in W \) or \(v \in W \).

(e) **Factoring.** Given numbers \(n, k \) written in binary, output \text{yes} iff \(n \) is divisible by \(d \) for some \(1 < d \leq k \).

(f) **Not-Factoring.** Given numbers \(n, k \) written in binary, output \text{yes} iff \(n \) is NOT divisible by \(d \) for any \(1 < d \leq k \). **Hint:** The problem \textsc{Primes} is solvable in polynomial time.

Primes: Given a number \(n \) written in binary, output \text{yes} iff \(n \) is a prime number.