CS41 Homework 2

This homework is due at 11:59PM on Wednesday, September 20. Write your solution using \LaTeX. Submit this homework using github. Try to make your answers as clear and concise as possible. This is an individual homework. It’s ok to discuss approaches and strategies at a high level. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you’ve done with a lab partner while in lab. In this case, note who you’ve worked with and what parts were solved during lab.

0. Before final submission, make sure to fill out the README file.

1. **Testing Glass Jars** (Adapted from Kleinberg and Tardos 2.8)

 You’re doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is as follows. You have a ladder with \(n \) rungs, and you want to find the highest rung from which you can drop a copy of the jar and not have it break. We call this the *highest safe rung*.

 It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung \(n/4 \) or \(3n/4 \) depending on the outcome. But this has the drawback that you could break a lot of jars in finding the answer.

 If your primary goal were to conserve jars, on the other hand, you could try the following strategy. Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks. In this way, you only need a single jar — at the moment it breaks, you have the correct answer — but you may have to drop it \(n \) times (rather than \(\log n \) as in the binary search solution).

 So here is the tradeoff: it seems you can perform fewer drops if you’re willing to break more jars. To understand better how this tradeoff works at a quantitative level, let’s consider how to run this experiment given a fixed “budget” of \(k \geq 1 \) jars. In other words, you have to determine the correct answer — the highest safe rung — and can use at most \(k \) jars in doing so.

 (a) Suppose you are given a budget of \(k = 2 \) jars. Describe a strategy for finding the highest safe rung that requires you to drop a jar at most \(f_2(n) \) times, for some function \(f_2(n) \) that grows slower than linearly.

 (b) Now suppose you have a budget of \(k = 3 \) jars. Describe a strategy for finding the highest safe rung that requires you to drop a jar at most \(f_3(n) \) times. Prove that \(f_3 \) grows asymptotically slower than \(f_2 \):

\[
\lim_{n \to \infty} \frac{f_3(n)}{f_2(n)} = 0.
\]
2. Asymptotic analysis.

For these problems, your example functions should have domain and range the positive integers \(\mathbb{N} \).

(a) Arrange the following functions in ascending order of growth rate. That is, if \(g \) follows \(f \) in your list, then it should be the case that \(f = O(g) \).

- \(f_1(n) = n^{2.5} \)
- \(f_2(n) = \sqrt{2n} \)
- \(f_3(n) = n + 10 \)
- \(f_4(n) = 10^n \)
- \(f_5(n) = 100^n \)
- \(f_6(n) = \log_{1.1}(n) \sqrt{n} \)
- \(f_7(n) = n^n \)
- \(f_8(n) = n^2 \log_2(n) \)
- \(f_9(n) = n^{\log_2(n)} \)

(b) Show that if \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \), then \(f(n) = O(h(n)) \).

(c) Give a proof or counterexample: If \(f \) is not \(O(g) \), then \(g \) is \(O(f) \).

(d) Let \(k \) be a fixed constant and suppose that \(f_1, \ldots, f_k \) and \(h \) are functions such that \(f_i = O(h) \) for all \(i \).

 i. Let \(g_1(n) := f_1(n) + \ldots + f_k(n) \). Is \(g_1 = O(h) \)? Prove or give a counterexample.
 If you give a counterexample, give an alternate statement that best captures the relationship between the two functions.

 ii. Let \(g_2(n) := f_1(n) \cdot \ldots \cdot f_k(n) \). Is \(g_2 = O(h) \)? Prove or give a counterexample.
 If you give a counterexample, give an alternate statement that best captures the relationship between the two functions.

3. Close-to-sorted. Say that a list of numbers is “k-close-to-sorted” if each number in the list is less than \(k \) positions from its actual place in the sorted order. (So a 1-close-to-sorted list is actually sorted.) Give an \(O(n \log k) \) algorithm for sorting a list of numbers that is \(k \)-close-to-sorted.

In your algorithm, you may use any data structure or algorithm from CS35 by name, without describing how it works.

4. Extra credit. For these problems, your example functions should have domain and range the positive integers \(\mathbb{N} \).

 - Find (with proof) a function \(f_1 \) such that \(f_1(2n) = O(f_1(n)) \).
 - Find (with proof) a function \(f_2 \) such that \(f_2(2n) = O(f_2(n)) \).

5. Extra credit. Define a function \(f : \mathbb{N} \to \mathbb{R}_{\geq 0} \) such that \(f = O(g) \) for all exponential functions \(g \), but \(f \) is not \(O(h) \) for any polynomial function \(h \).