CS41 Lab 8: Polynomial-Time Verifiers

This week, we’ve started to understand what makes some problems seemingly hard to compute. In this lab, we’ll consider an easier problem of verifying that an algorithm’s answer is correct.

1. **Reducing Vertex-Cover to Independent-Set.** Recall from class the following problems
 - **INDEPENDENT-SET** takes an undirected graph \(G = (V, E) \) and integer \(k \) and returns \textbf{yes} iff \(G \) contains an independent set of size at least \(k \).
 - **VERTEX-COVER** takes an undirected graph \(G = (V, E) \) and integer \(k \) and returns \textbf{yes} iff \(G \) contains a vertex cover of size at most \(k \).

 In class we saw that **INDEPENDENT-SET \(\leq_p \) VERTEX-COVER**. Show that **VERTEX-COVER \(\leq_p \) INDEPENDENT-SET**.

2. **Polynomial-time Verifiers.** Call \(V \) an efficient \textit{verifier} for a decision problem \(L \) if
 (a) \(V \) is a polynomial-time algorithm that takes two inputs \(x \) and \(w \).
 (b) There is a polynomial function \(p \) such that for all strings \(x, x \in L \) if and only if there exists \(w \) such that \(|w| \leq p(|x|) \) and \(V(x, w) = \textbf{yes} \).

 Give polynomial-time verifiers for the following problems, none of which are known to have polynomial-time algorithms.
 (a) **INDEPENDENT-SET**.
 (b) **VERTEX-COVER**.
 (c) **THREE-COLORING**. Given \(G = (V, E) \) return \textbf{yes} iff the vertices in \(G \) can be colored using at most three colors such that for every edge \(e = (u, v) \) in \(E \), \(u \) and \(v \) have different colors.
 (d) **WEDDING-PLANNER**. Recall in the Wedding planner problem, the input consists of a list of \(n \) people to possibly invite to a wedding, along with \(m \) clauses, where each clause specifies some criteria for whom to invite or not invite. Output \textbf{yes} iff there exists an invitation list that satisfies all clauses.
 \textbf{Note:} Assume that each clause is of the form e.g. \(x_1 \lor x_2 \lor \cdots \lor \bar{x}_k \), where \(x_i \) means to invite person \(i \), and \(\bar{x}_j \) means to not invite person \(x_j \).
 (e) **FACTORIZING**. Given numbers \(n, d \) written in binary, output \textbf{yes} iff \(n \) is divisible by \(k \) for some \(1 < k \leq d \).
 (f) **NOT-FACTORIZING**. Given numbers \(n, d \) written in binary, output \textbf{yes} iff \(n \) is \textbf{NOT} divisible by \(k \) for any \(1 < k \leq d \).

 \textbf{Hint:} The following problem is \textbf{solvable} in polynomial time.\(^1\)

 PRIMES: Given a number \(n \) written in binary, output \textbf{yes} iff \(n \) is a prime number.

\(^1\)This actually wasn’t known until 2002, when Agrawal, Kayal, and Saxena created the AKS primality test. Kayal and Saxena were undergraduates at IIT Kanpur at the time; Agrawal was their advisor.