1. **Finding the Median.** Given a set \(S = \{a_1, \ldots, a_n\} \) of numbers, the median of \(S \), denoted \(\text{med}(S) \), is the \(k \)-th smallest element of \(S \), where \(k = \left\lfloor \frac{n+1}{2} \right\rfloor \). In this problem, you will analyze a randomized algorithm to output the median. Consider the following algorithm for finding the median:

\[\text{FindMedian}(S) \]

1. Return \(\text{Select}(S, \left\lfloor \frac{n+1}{2} \right\rfloor) \)

\[\text{Select}(S, k) \]

1. Choose pivot \(a_i \in S \)
2. Initialize \(S^-, S^+ := \{\} \)
3. for each \(j \neq i \)
4. if \(a_j < a_i \) add \(a_j \) to \(S^- \)
5. if \(a_j > a_i \) add \(a_i \) to \(S^+ \)
6. if \(|S^-| = k - 1\) return \(a_i \)
7. else if \(|S^-| > k - 1\)
 return \(\text{Select}(S^-, k) \)
8. else
 return \(\text{Select}(S^+, k - (1 + |S^-|)) \)

- First, show that \(\text{FindMedian} \) always returns the median.
- Next, analyze the running time of \(\text{FindMedian} \) when the pivot element is chosen uniformly\(^1\) from \(S \). The following structure will help guide you. Say that the algorithm is in phase \(j \) if there are between \(n(3/4)^j \) and \(n(3/4)^{j+1} \) elements in the set \(S \) being considered. So, for example, we are in phase 0 the first time \(\text{Select} \) is called.

Call an element \(a_i \in S \) central to \(S \) if (i) at least \(|S|/4 \) of the elements of \(S \) are less than \(a_i \) and (ii) at least \(|S|/4 \) elements of \(S \) are greater than \(a_i \).

(a) Show that there are \(|S|/2 \) central elements.
(b) Show that if the pivot element is central, the phase ends i.e., the next recursive call that gets made will be in a different phase.
(c) Give an upper bound on the expected number of recursive calls to \(\text{Select} \) before a round ends.
(d) Give an upper bound on the running time of each \(\text{Select} \) call, not including recursive calls.
(e) Give an upper bound on the number of phases that are run before \(\text{FindMedian} \) terminates.
(f) Give an upper bound on the expected runtime of \(\text{FindMedian} \) when the pivot is chosen uniformly.

\(^1\)An element is chosen *uniformly* if each element is equally likely to be picked.
2. **Three-Coloring Revisited.** Recall the Three-Coloring problem: Given a graph $G = (V, E)$, output yes iff the vertices in G can be colored using only three colors such that the endpoints of any edge have different colors. In homework 8, you showed that Three-Coloring is NP-Complete. In this lab, we’ll look at several approximation and randomized algorithms for the optimization version of Three-Coloring.

Let Three-Color-OPT be the following problem. Given a graph $G = (V, E)$ as input, color the vertices in G using at most three colors in a way that maximizes the number of satisfied edges, where an edge $e = (u, v)$ is satisfied if u and v have different colors.

For a graph $G = (V, E)$, let c^* denote the maximum number of satisfiable edges.

(a) **Hardness of Three-Color-OPT.** Show that if there is a polynomial-time algorithm for Three-Color-OPT then $P = NP$.

(b) **Approximation Algorithm.** Give a deterministic, polynomial-time $(3/2)$-approximation algorithm for Three-Color-OPT. Your algorithm must satisfy at least $2c^*/3$ edges, where for an arbitrary input $G = (V, E)$, c^* denotes the maximum number of satisfiable edges.

(c) **Randomized Algorithms.** Give randomized algorithms for Three-Color-OPT with the following behavior:

i. An algorithm with expected polynomial runtime that always outputs a three-coloring that satisfies at least $2c^*/3$ edges.

ii. An algorithm that runs in worst-case (i.e., not expected) polynomial time and produces a three-coloring such that the expected number of satisfied edges is at least $2c^*/3$.

iii. An algorithm that runs in worst-case polynomial time, and with probability at least 99% outputs a three-coloring which satisfies at least $2c^*/3$ edges. What is the running time of your algorithm? The following inequality might be helpful: $1 - x \leq e^{-x}$ for any $x > 0$.

3. **(Kleinberg and Tardos, 11.9).** Given disjoint sets A, B, C and a set $T \subseteq A \times B \times C$, a 3d matching is a subset $M \subseteq T$ such that each element of $A \cup B \cup C$ appears at most once. The 3D-Matching problem is to find the largest 3d matching given sets $A, B, C,$ and T.

Give a deterministic (not randomized) polynomial-time 3-approximation algorithm for 3D-Matching.