
CS41 Lab 11
(section 2)

1. Solving Linear Programs

In this exercise, you’ll optimally solve the linear program (which we’ll see again this week):

Minimize 2x1 + 2x2 + 3x3

subject to: x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

Note: all variables should be nonnegative. Throughout this lab writeup, we’ll suppress
writing these constraints for brevity.

(a) First, as a warm-up, solve the following linear program.

Minimize 7 + x1 + 2x2

subject to: x3 = 1 + 3x1 − 4x2

x4 = 3− 2x1 + x2

x5 = 2 + x1 + x2

Hint: The answer should be realllllllly simple.

(b) The linear program in part (1a) is easy to solve for three reasons: (i) each constraint
is an equality, (ii) the constants on the right-hand side of each constraint are positive,
and (iii) the variables in the objective function all have positive coefficients. Our goal
for the rest of the problem is to transform the LP we’d like to solve so it has all three
conditions.

First, handle condition (i). It’s possible to replace any inequality with an equality by
adding an additional nonnegative variable called a slack variable. For example, if the LP
has a constraint x1+3x2 ≥ 4, then we could replace it with the equality x1+3x2 = 4+s1.

Rewrite the LP by taking each constraint and replacing it with another constraint
involving an equality and a new variable.

(c) Modify this LP by rearranging each inequality so that (i) there is a single variable to
the left hand side, and (ii) the constants on the right hand side are all positive.

Note: the variable on the left-hand side of each constraint should appear no where else
in the linear program. If it does, replace it by what’s on the right hand side of the
constraint. For example, taking the constraint x1 + 3x2 = 4 + s1 from the previous
subproblem, it is natural to transform it into:

s1 = −4 + x1 + 3x2 .

If s1 is a slack variable you just introduced, then it should appear only once in the linear
program. On the other hand, the constant −4 is negative. To get a positive constant
you could replace the constraint with

x1 = 4 + s1 − 3x2

1



and replace any other occurence of x1 in the linear program with 4 + s1 − 3x2.

Modify the constraints of your linear program by making one or more transfor-
mations like the one above.

(d) Removing negative coefficients in the objective function. To complete the trans-
formation of your linear program, you need to get rid of any negative coefficients in the
objective function. It’s possible to do this using what’s called a pivot operation. In
a pivot operation, you choose a variable in the objective function, select a constraint
containing it, and make a substitution based on that constraint. For example, if your
objective was to minimize 4− x1 + 2x2, and there was a constraint

s1 = 3− x1 − x2 ,

then you could transform the constraint into

x1 = 3− s1 − x2

and replace all other occurrences of x1 in the LP with 3− s1 − x2.

Now, perform pivot operations until all variables in the objective function have
positive coefficients.

(e) Solve the following minimization problem:

Minimize 2x1 + 2x2 + 3x3

subject to: x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

2. Weighted vertex cover. Consider the following graph G = (V,E)

a b

c d

with the following vertex weights: wa = 2, wb = 3, wc = 3, wd = 2.

(a) Give a minimal vertex cover.

(b) What is the minimum-weight vertex cover? what is the minimum weight?

(c) What is the optimal solution returned by the linear program we saw in class? Note:
don’t worry about finding the absolute optimal answer. However, you should at least
find a feasible solution that has less weight than the vertex cover you saw in the first
part.

2



3. Traveling Salesman Problem. In this problem, a salesman travels the country making
sales pitches. The salesman must visit n cities and then return to her home city, all while
doing so as cheaply as possible.

The input is a complete graph G = (V,E) along with nonnegative edge costs {ce : e ∈ E}. A
tour is a simple cycle (vj1 , . . . , vjn , vj1) that visits every vertex exactly once.1 The goal is to
output the minimum-cost tour.

For many TSP applications (such as when the cost is proportional to the distance between
two cities), it makes sense for the edges to obey the triangle inequality : for every i, j, k, we
have

c(ik) ≤ c(ij) + c(jk).

This version is often called Metric-TSP.

The (decision version of the) Traveling Salesman Problem is NP-Complete. For this prob-
lem, you will develop a 2-approximation algorithm for Metric-TSP.

(a) First, to gain some intuition, consider the following graph:

a

b

c d

e

17

14 21

15

22

19 25

13

18

20

(b) On your own try to identify a cheap tour of the graph.

(c) Build some more intuition by computing the minimum spanning tree (MST) of the graph.
Let T be your minimum spanning tree.

(d) Let OPT be the cheapest tour. Show that its cost is bounded below by the cost of the
MST: cost(T ) ≤ cost(OPT ).

(e) Give an algorithm which returns a tour A which costs at most twice the cost of the
MST: cost(A) ≤ 2 cost(T ).

(f) Conclude that your algorithm is a 2-approximation for Metric-TSP.

1except for the start vertex which we visit again to complete the cycle

3


