
Linear programming and duality
A reminder of some linear programming vocabulary:

• A linear program in canonical form is written as: min~ct ·~x subject to constraints A ·~x ≥ ~b
and ~x ≥ 0, where the matrix A and vectors ~c and ~b are all constants.

• The objective function is the thing we are trying to minimize/maximize in a linear program
(~ct · ~x in canonical form).

• A feasible solution to a linear program is an assignment of values to the variables ~x which
satisfies all the constraints.

LPs for flow networks. Last week we saw that the maximum flow in a network corresponds
to the minimum capacity of any s-t cut in that network.

Consider the following example network with edge capacities.
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We saw that we could write the maximum flow from s to t as the solution to a linear program:

max fsa +fsb
subject to: fsa ≤ 3

fsb ≤ 2
fab ≤ 1

fat ≤ 1
fbt ≤ 3

fsa −fab −fat = 0
fsa +fsb −fbt = 0

f ≥ 0

The interpretation of these variables was that each edge (u, v) got a corresponding fuv variable
which expressed how much flow was assigned to that edge. The edge capacity limit is enforced
by the inequality constraints. The conservation of flow requirement is enforced by the equality
constraints. Thus a feasible solution to this linear program represents a legal s-t flow on the
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network, and the objective function we are maximizing is exactly the value of the flow. (In class
we rewrote this linear program to be in canonical form.)

It’s reasonably clear that this linear program encodes the maximum flow. But what about the
minimum cut?

Consider the following linear program:

min 3ysa +2ysb +yab +yat +3ybt
subject to: ysa +ua ≥ 1

ysb +ub ≥ 1
yab −ua +ub ≥ 0

yat −ua ≥ 0
ybt −ub ≥ 0

~y ≥ 0

This linear program describes the minimum cut problem! Suppose that the ua variable is 1 if a is
in the cut with s, and 0 otherwise, and similarly ub. For each edge (u, v), the variable yuv is 1 if
the edge contributos to the cut capacity, and 0 otherwise.

The constraints enforce these requirements on the variables. For example, the first constraint
states that “if a is not on the same side of the cut as s, then (s, a) must be added to the cut
capacity.”

Although the y and u variables are free to take values larger than one, the objective function is
a minimization, so it will force them to be as small as possible.

These two linear programs are remarkably similar. Indeed, if we write the flow-maximizing LP
as vectors and matrices, we have:

min ~ct · ~x
subject to: A · ~x ≥ ~b

~x ≥ 0

Call this the primal linear program.
Now, using the same constants A, ~c, and ~b, the cut-capacity-minimizing LP can be written:

max ~bt · ~y
subject to: At · ~y ≤ ~c

~y ≥ 0

This is the dual linear program. Each variable of the primal corresponds to a constraint of the
dual, and vice-versa. The equality constraints correspond to unrestricted variables (the us), and
the inequality constraints correspond to restricted variables. Minimization becomes maximization,
the matrices are transposes of each other, and the roles of the objective function and the constant
bounds are interchanged.

Every LP has a dual formed in this way. (The particular details are not necessary for this class.
There are entire courses taught on linear programming!) As the terminology suggests, the dual of
a dual is the primal again.

By the theorem from class, we know that the maximum flow is equal to the capacity of the
minimum cut. In fact, this is true in general for dual linear programs.

Theorem 1. If a linear program has a bounded optimum, then so does its dual, and the two optimal
values are equal.
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