
Augmenting paths
Monday, November 7, 2016

This emendation to today’s lecture provides some fixes to bugs in the augmentingPath algo-
rithm, as well as discussion of other possible implementations.

1. Bug fixes. The algorithm from class should be patched as follows.
Lines 1-2 and 10-11 are new/changed.

augmentingPath(G = (V,E), s, t, {ce}, f)

Precondition: For each e ∈ E, input values ce and f(e) are ≥ 0. Also, s and t ∈ V .
Postcondition: Returns an augmenting path from s to t, or null if none exists.

1 if e = (s, t) ∈ E and ce − f(e) > 0:
2 return [(s, t)] // base case of recursion
3 for each neighbor v of s:
4 if (s, v) ∈ E:
5 ` = c(s,v) − f((s, v))

6 elseif (v, s) ∈ E:
7 ` = f((v, s)) // this is the amount of flow we can “push back”
8 if ` > 0:
9 // then we can start our augmenting path from s to v

10 G′ = (V ′, E′) where V ′ = V \{s} and E′ = E − {all edges involving s}
11 temp = augmentingPath(G′, v, t, {ce}, f)
12 if temp 6= null:
13 return temp.prepend((s, v))
14 return null

The maxFlow algorithm remains the same as in class:

maxFlow(G = (V,E), s, t, {ce})
Precondition: G is a directed edge, and ce ≥ 0 for all e ∈ E. Also, s and t ∈ V .

Postcondition: Returns a valid flow from s to t on G which is maximal.
1 initialize f(e) = 0 for all e ∈ E
2 P = augmentingPath(G, s, t, {ce}, f)
3 while P 6= null:

4 ` = mine∈P

{
ce − f(e) if e ∈ E
f(ereverse) if ereverse ∈ E

5 for e ∈ P :
6 if e ∈ E:
7 f(e) = f(e) + `
8 else if ereverse ∈ E:
9 f(ereverse) = f(ereverse)− `

10 P = augmentingPath(G, s, t, {ce}, f)
11 return f

1



2. Alternate design using the residual graph.

As students observed in class, maxFlow does not explicitly use the residual graph. (Although
the idea of the residual graph is hovering around, just off-screen.)

We can modify both maxFlow and augmentingPath to explicitly use the residual graph:

maxFlow2(G = (V,E), s, t, {ce})
Precondition: G is a directed edge, and ce ≥ 0 for all e ∈ E. Also, s and t ∈ V .

Postcondition: Returns a valid flow from s to t on G which is maximal.
1 initialize f(e) = 0 for all e ∈ E
2 initialize Gf = G and for each e ∈ E, c′e = ce
3 for (u, v) ∈ E: if (v, u) 6∈ E then add (v, u) to Gf and define c′(v,u) = 0

4 // Now Gf is the residual graph of G for flow f , with residual capacities {c′e}.
5 P = augmentingPath2(Gf , s, t, {c′e})
6 while P 6= null:

7 ` = mine∈P

{
c′e if e ∈ E
f(ereverse) if ereverse ∈ E

8 for e = (u, v) ∈ P :
9 if (u, v) ∈ E:

10 f(e) = f(e) + ` // increase the flow along this forward edge
11 c′(u,v) = c′(u,v) − ` // residual forward capacity decreases

12 c′(v,u) = c′(v,u) + ` // residual backward capacity increases

13 elseif (v, u) ∈ E:
14 f((u, v)) = f((u, v))− ` // push back flow along (u, v)
15 c′(u,v) = c′(u,v) + ` // residual forward capacity increases

16 c′(v,u) = c′(v,u) − ` // residual backward capacity decreases

17 P = augmentingPath2(Gf , s, t, {c′e})
18 return f

augmentingPath2(H = (V,E), s, t, {ce})
Precondition: H is a residual graph (has all possible edges), ce ≥ 0 for all e ∈ E, and s and t ∈ V .

Postcondition: Returns an augmenting path from s to t, or null if none exists.
1 if e = (s, t) ∈ E and ce ≥ 0:
2 return [(s, t)] // base case of recursion
3 for each neighbor v of s:
4 if c(s,v) > 0:

5 G′ = (V ′, E′) where V ′ = V \{s} and E′ = E − {all edges involving s}
6 temp = augmentingPath2(G′, v, t, {ce})
7 if temp 6= null
8 return temp.prepend((s, v))
9 return null

2



3. Alternate designs. Other possible ideas for how to design augmentingPath2:

Dijkstra: Use Dijkstra’s algorithm on the residual graph Gf , traversing only edges e with ce > 0.
Keep track of “parent” nodes so that the augmenting path can be reconstructed.

BFS: Use BFS on the residual graph Gf starting at s, traversing only edges e with ce > 0,
to find whether t is reachable. Keep track of “parent” nodes in the BFS so that the
augmenting path can be reconstructed.

DFS: Our implementation augmentingPath2 above does the DFS version: starting at s, use
DFS on the residual graph Gf starting at s, traversing only edges e with ce > 0, to find
whether t is reachable. Keep track of “parent” nodes (augmentingPath2 does this in
the call stack) so that the augmenting path can be reconstructed.

3


