## Algorithm 3 analysis

## ALGORITHM3()

$k=1$.
while you haven't found your friend:
walk $k$ miles east
return to start
walk $k$ miles west
return to start
$k=2 * k$.

Now let's analyze this algorithm.
Correctness: Clearly you do eventually reach your friend, and then you stop, so the algorithm is correct.
Efficiency: Suppose your friend starts $m$ miles from your starting location. How far do you have to walk, following this algorithm, before you find her?
In one complete iteration of the algorithm, you walk $4 k$ miles. How many complete iterations do you do?
Let's say that we stop on the $t^{\text {th }}$ iteration, so $2^{t-1}<m \leq 2^{t}$. (The first inequality is because we finished iteration $t-1$ and still had not finished; the second inequality is because we find her on this iteration.)

- Case 1: Your friend is $m$ miles east of you.

The total distance walked

$$
\begin{aligned}
& =4 \cdot 1+4 \cdot 2+4 \cdot 4+4 \cdot 8+\ldots+4 \cdot 2^{t-1}+m \quad \text { (the last, partial iteration adds the }+m \text { term) } \\
& =\sum_{k=0}^{t-1}\left(4 \cdot 2^{k}\right)+m \\
& =4 \cdot \sum_{k=0}^{t-1}\left(2^{k}\right)+m \\
& =4\left(2^{t}-1\right)+m \\
& <4(2 m-1)+m \\
& =8 m-4+m \\
& =O(m)
\end{aligned}
$$

- Case 2: Your friend is $m$ miles west of you.

Total distance walked

$$
\begin{aligned}
& =4 \cdot 1+4 \cdot 2+\ldots+4 \cdot 2^{t-1}+\left(2^{t}+2^{t}+m\right) \\
& =\sum_{k=0}^{t-1}\left(4 \cdot 2^{k}\right)+2^{t+1}+m \\
& =4 \cdot \sum_{k=0}^{t-1}\left(2^{k}\right)+2^{t+1}+m \\
& =4\left(2^{t}-1\right)+2^{t+1}+m \\
& <4(2 m-1)+4 m+m \\
& =8 m-4+4 m+m \\
& =O(m)
\end{aligned}
$$

Note: For this class, you are not expected to already know facts like $\sum_{k=0}^{t-1} 2^{k}=2^{t}-1$. If you run across calculations like this in homework, you should feel free to use outside resources (math books, Wolfram Alpha, etc.) to help you solve the problem.

