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Preface
This document represents the first public report of the Computing Curricula 2001 project
(CC2001)—a joint undertaking of the Computer Society of the Institute for Electrical and
Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM)
to develop curricular guidelines for undergraduate programs in computing.  The final
report from the CC2001 Task Force is scheduled for publication in 2001.  At this point in
the process, one year before the anticipated publication date, we have laid much of the
foundation for the final report.  At the same time, we have a good deal of work ahead of
us in the coming year.  Our reason for circulating this early draft is to get feedback from
the computing community—practitioners, educators, and students—on our work to date
and on our overall directions for the project.

At the early task force meetings, we had decided—as the earlier curriculum committees
dating back to Curriculum ’68 had done—to direct our attention only to curricula in
computer science and computer engineering.  The field of computing, however, has
become much broader in recent years and now incorporates many new disciplines that
have established their own identity independent of traditional computer science.  The
feedback that we received from our prospective audience overwhelmingly supported our
taking a broader view of the discipline.  In this draft, we present an outline of how we
intend to expand our scope without becoming so general that the report loses much of its
impact.

To date, we have accomplished the following tasks:

• Completed a survey and evaluation of the impact of Computing Curricula 1991
• Assessed the major changes in the discipline over the past decade
• Articulated a set of principles to guide our work
• Developed a proposed organizational structure and strategy for the final report
• Established knowledge area focus groups to define topics for specific areas
• Reviewed the reports of those working groups
• Drafted a list of areas and topics that comprise the body of knowlege for computer

science
• Proposed a set of core topics for undergraduates majoring in computer science
• Created pedagogy focus groups to consider broad issues in computing education

The major tasks that remain to be done include

• Update the structure of the report in response to feedback from this draft
• Ask the pedagogy focus groups to update their reports in light of the broader scope
• Obtain final reports for the pedagogy groups and integrate them into the report
• Finalize the definition of the core so that it encompasses more of the breadth in the

computing field
• Develop specific models for courses that cover the core areas
• Write the chapters on pedagogical strategies
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Chapter 1
Introduction

In the fall of 1998, the Computer Society of the Institute for Electrical and Electronic
Engineers (IEEE-CS) and the Association for Computing Machinery (ACM) established
a joint task force to undertake a major review of curriculum guidelines for undergraduate
programs in computing.  The charter of the task force was expressed as follows:

To review the Joint ACM and IEEE/CS Computing Curricula 1991 and develop a revised
and enhanced version for the year 2001 that will match the latest developments of
computing technologies in the past decade and endure through the next decade.

This report—Computing Curricula 2001 or CC2001for short—builds on several earlier
reports including Curriculum ’68 [3], A Curriculum in Computer Science and
Engineering [19], Curriculum ’78 [4], The 1983 Model Program in Computer Science
and Engineering [17], and Computing Curricula 1991 [39].  The relationship of this
report to its predecessors—along with the lessons that the CC2001 Task Force derived
from them—is discussed in Chapter 2.

Under our charter, the central goal of the CC2001 effort is to revise Computing Curricula
1991 so that it incorporates the developments of the past decade.  Computing has
expanded and changed dramatically over that time.  One of our first tasks, therefore, was
to identify the nature and scope of those changes.  The evolution of computing and the
effect of that evolution on computing curricula are described in Chapter 3.

From a curricular perspective, one of the most profound changes over the past decade has
been a substantial broadening of the discipline.  In its early years, computing was often
identified with computer science, which draws its foundations primarily from
mathematics and electrical engineering.  The curriculum reports cited earlier in this
chapter reflect this history and focus on curriculum development in those branches of
computing that follow most directly from this tradition: computer science and computer
engineering.  Today, computing has grown to such an extent that these two areas no
longer cover what has become a much more diverse discipline.  Computing is now a
critical part of many academic fields, from business management to molecular biology.
In this report, we have tried to understand the structure of that larger discipline and the
ways in which the traditional body of knowledge associated with computing fits into that
larger world.  The question of the increasing breadth of the discipline and its impact on
curriculum design is discussed in Chapter 4.

Our consideration of the effectiveness of past reports, the changes over the past decade,
and the overall broadening of the discipline have led us to articulate a set of principles
that have guided the task force in preparing this report.  Those principles are enumerated
in Chapter 5 and applied to the specific concern of curriculum design in Chapter 6.

The remaining chapters of the report consist of strategic discussions of various aspects of
the computing curriculum organized around general pedagogical themes rather than by
specific subdiscipline.  These themes, which correspond to the set of six Pedagogy Focus
Groups established by the CC2001 Task Force, are as follows:

1. Introductory topics and courses
2. Supporting topics and courses
3. The computing core
4. Professional practices
5. Advanced courses and undergraduate research
6. Computing across curricula
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Chapter 2
Lessons from Past Reports

In developing this report, the CC2001 Task Force did not have to start from scratch.  We
have benefited tremendously from past curriculum studies and are indebted to the authors
of those studies for their dedicated efforts.  As part of our early work on Computing
Curricula 2001, we looked carefully at the most recent curriculum studies—particulary
Computing Curricula 1991—to get a sense of how those studies have influenced
computing education.  By identifying which aspects of the previous reports have been
successful and which have not, we can structure the CC2001 report to maximize its
impact.  This chapter offers an overview of the earlier reports and the lessons we have
taken from them.

2.1  Historical background
Efforts to design model curricula for programs in computer science and computer
engineering began in 1960s, shortly after the first departments in these areas were
established.  In 1968, following on a series of earlier studies [2, 13, 34], the Association
for Computing Machinery (ACM) published Curriculum ’68 [3], which offered detailed
recommendations for academic programs in computer science, along with a set of course
descriptions and extensive bibliographies for each topic area.

Over the next decade, the discipline of computing developed rapidly, to the point that the
recommendations in Curriculum ’68 became largely obsolete.  During the 1970s, both the
ACM and the Computer Society of the Institute of Electrical and Electronics Engineers
(IEEE-CS) appointed committees to develop a revised computing curriculum.  In 1977,
the Education Committee of the IEEE-CS published a report for programs in computer
science and engineering [19].  The Computer Society’s report was significant in that it
took a broader view of the computing discipline, incorporating more engineering into the
curriculum and bridging the gap between software- and hardware-oriented programs.
Responding to the pressures generated by the rapid development of the computing field,
the Computer Society updated its computer science and engineering curriculum in 1983
[17].  The ACM Curriculum ’68 report was superseded by a much more comprehensive
Curriculum ’78, which had a substantial impact on computing education. Among its
contributions, Curriculum ’78 proposed a standard syllabus for a set of courses that
encompassed the core knowledge of computer science as a discipline.

In the late 1980s, the Computer Society and ACM joined forces to undertake a more
ambitious curriculum review, which was published as Computing Curricula 1991 [39],
hereafter referred to as CC1991.  The CC1991 report is more comprehensive than its
predecessors, but takes a different approach.  Unlike Curriculum ’78 and the 1983 IEEE-
CS report, each of which focused on identifying a standard syllabus for individual
courses, CC1991 divides the body of knowledge associated with computing into
individual knowledge units.  Each knowledge unit in CC1991 corresponds to a topic that
must be covered at some point during the undergraduate curriculum, although individual
institutions have considerable flexibility to assemble the knowledge units into course
structures that fit their particular needs.  The appendix of the CC1991 report includes 11
sample implementations that show how the knowledge units can be combined to form
courses at a variety of institutions.

2.2  Evaluation of Computing Curricula 1991
The decision to produce a new curriculum report was driven primarily by the enormous
changes that have occurred in the computing discipline over the past decade.  At the same
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time, there was also a perception among some computer science educators that CC1991
was not as influential as some of its predecessors.  Although CC1991 is certainly more
detailed, institutions have sometimes found it harder to adopt than Curriculum ’78 and
the IEEE-CS model curriculum in computer science and engineering.

In order to understand both the strengths and the limitations of CC1991, the task force
undertook an informal survey of computing educators.  We developed a short
questionnaire, which we then mailed to the chairs of all computer science departments in
the United States and Canada.  We also made the questionnaire available more generally
through the World Wide Web.  A copy of the questionnaire appears in Figure 2-1.

Over 98 percent of the respondents—we received 124 responses through the web and
about 30 responses through regular mail—supported the concept of updating the CC1991
report.  The survey responses also revealed the following general reactions:

• Knowledge units are often not as useful as course or curriculum designs.  Although
many respondents indicated that they liked the concept of knowledge units as a
resource, there was strong sentiment for a greater emphasis on course design along
with the knowledge units.  Our survey revealed that many institutions continue to work
with the curriculum models outlined in Curriculum ’78, largely because it included
specific course designs.

• There is strong support for a more concrete definition of a minimal core.  CC1991
argues that all undergraduate programs in computer science should incorporate the
entire collection of knowledge units in the nine areas that comprise the common
requirements.  If the area encompassing Introduction to a Programming Language is
included, the knowledge units in the common requirements account for 283 hours of
classroom time.  As our discipline evolves, it is tempting to add new material to the
required set, thereby increasing the number of hours mandated by the curriculum.  Our
survey revealed considerable support for the idea of identifying a smaller set of core
topics that would serve as a foundation for more advanced study in a number of
computing disciplines, including computer engineering, computer science, software
engineering, information technology, and the like.  The areas and structure of the more
advanced courses could vary markedly depending on the nature of the institution, the
academic program, and the needs and interests of individual students.

Figure  2-1.  Questionnaire to assess the impact of Computing Curricula 1991

1. Did you use CC1991 in any way in the past?
2. If you are a college or university teacher, do you know if your department ever

looked at or used CC1991?
3. If you answered yes to either question, how was it used, and what features of it were

helpful?
4. Do you think there is a need to create CC2001?  Why?
5. CC1991 had 10 main content areas.  Do you think any new areas should be added?

Any existing area deleted?  Any existing area updated?
6. Do you believe CC2001 should provide guidelines about a minimal core?  If so,

what would that core include?
7. Do you have any suggestion about the format?  CC1991 was designed in terms of

knowledge units along with possible model curricula in terms of those knowledge
units.

8. Have you any other comments or suggestions for updating CC1991?
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• The report should define more model curricula, with particular emphasis on diverse
nature of educational resources, systems, and requirements at different academic
departments throughout the country and the world.  Several of the earlier reports,
particularly those that preceded CC1991, have focused too heavily on the curricular
needs of academic computer science programs in four-year colleges and universities in
the United States.  Computing today is taught under many different names in a wide
variety of institutions throughout the world.  Respondents to our survey felt strongly
that our revised report should serve a broad community.

• Curriculum reports should pay greater attention to accreditation criteria for both
computer science and computing engineering programs.  Accreditation is an important
issue for many survey respondents in the United States.  The structure of engineering
accreditation, however, is changing markedly with the new criteria proposed by the
Accreditation Board for Engineering and Technology (ABET) and the Computing
Sciences Accreditation Board (CSAB) [1, 12].  Under the new guidelines, programs
will be allowed much greater flexibility than they have enjoyed in the past but must
provide a coherent rationale for their curriculum and demonstrate that it meets its
stated goals.  This report is designed not only to help institutions design their
computing curriculum but also to assist them in the preparation of the underlying
rationale they need to meet the new accreditation criteria.
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Chapter 3
Computing and Change

Today, as we enter a new millennium, computing is an enormously vibrant field.  From
its inception just half a century ago, computing has become the defining technology of
our age.  Computers are integral to modern culture and are the primary engine behind
much of the world’s economic growth.  The field, moreover, continues to evolve at an
astonishing pace.  New technologies are introduced continually, and existing ones
become obsolete in the space of a few years.

The rapid evolution of the discipline has a profound effect on computing education,
affecting both content and pedagogy.  When CC1991 was published, for example,
networking was not seen as a major topic area, accounting for only six hours in the
common requirements.  The lack of emphasis on networking is not particularly
surprising.  After all, networking was not yet a mass-market phenomenon, and the World
Wide Web was little more than an idea in the minds of its creators.  Today, a mere ten
years later, networking and the web have become the underpinning for much of our
economy.  They have become critical foundations of the computing domain, and it is
impossible to imagine that undergraduate programs would not devote significantly more
time to this topic.  At the same time, the existence of the web has changed the nature of
the educational process itself.  Modern networking technology enhances everyone’s
ability to communicate and gives people throughout the world unprecedented access to
information.  In most academic programs today—not only in computing but in other
fields as well—networking technology has become an essential pedagogical tool.

The charter of the CC2001 Task Force asks us to “review the Joint ACM and IEEE/CS
Computing Curricula 1991 and develop a revised and enhanced version for the year 2001
that will match the latest developments of computing technologies.”  To do so, we felt it
was important to spend part of our effort getting a sense of what aspects of computing
had changed over the last decade.  We believe that these changes fall into two
categories—technological and cultural—each of which have a significant effect on
computing education.  The major changes in each of these categories are described in the
individual sections that follow.

3.1  Technological changes
Much of the change that affects computing comes from advances in technology.  Many of
these advances are part of a ongoing evolutionary process that has continued for many
years.  Moore’s Law—the 1965 prediction by Intel founder Gordon Moore that
microprocessor chip density would double every eighteen months—continues to hold
true.  As a result, we have seen exponential increases in available computing power that
have made it possible to solve problems that would have been out of reach just a few
short years ago.  Other changes in the discipline, such as the rapid growth of networking
after the appearance of the World Wide Web, are more dramatic, suggesting that change
also occurs in revolutionary steps.  Both evolutionary and revolutionary change affects
the body of knowledge required for computing and the educational process.

Technological advancement over the past decade has increased the importance of many
curricular topics, such as the following:

• The World Wide Web and its applications
• Networking technologies, particularly those based on TCP/IP
• Graphics and multimedia
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• Embedded systems
• Relational databases
• Interoperability
• Object-oriented programming
• The use of sophisticated application programmer interfaces (APIs)
• Human-computer interaction
• Software safety
• Security and cryptography
• Application domains

As these topics increase in prominence, it is tempting to include them as undergraduate
requirements.  Unfortunately, the restrictions of most degree programs make it difficult to
add new topics without taking others away.  It is often impossible to cover new areas
without reducing the amount of time devoted to more traditional topics whose importance
has arguably faded with time, such as assembly language programming, formal
semantics, and numerical analysis.

3.2  Cultural changes
Computing education is also affected by changes in the cultural and sociological context
in which it occurs.  The following changes, for example, have all had an influence on the
nature of the educational process:

• Changes in pedagogy enabled by new technologies.  The technological changes that
have driven the recent expansion of computing have direct implications on the culture
of education.  Computer networks, for example, make distance education much more
feasible, leading to enormous growth in this area.  Those networks also make it much
easier to share curricular material among widely distributed institutions.  Technology
also affects the nature of pedagogy.  Demonstration software, computer projection, and
individual laboratory stations have made a significant difference in the way computing
is taught.  The design of computing curricula must take into account those changing
technologies.

• The dramatic growth of computing throughout the world.  Computing has expanded
enormously over the last decade.  For example, in 1990, few households—even in the
United States—were connected to the Internet.  A U.S. Department of Commerce
study [33] revealed that by 1999 over a third of all Americans had Internet access from
some location.  Similar growth patterns have occurred in most other countries as well.
The explosion in the access to computing brings with it many changes that affect
education, including a general increase in the familiarity of students with computing
and its applications along with a widening gap between the skill levels of those that
have had access and those who have not.

• The growing economic influence of computing technology.  The dramatic excitement
surrounding high-tech industry, as evidenced by the Internet startup fever of the past
five years, has significant effects on education and its available resources.  The
enormous demand for computing expertise and the vision of large fortunes to be made
has attracted many more students to the field, including some who have little intrinsic
interest in the material.  At the same time, the demand from industry has made it
harder for most institutions to attract and retain faculty, imposing significant limits on
the capacity of those institutions to meet the demand.

• Greater acceptance of computing as an academic discipline.  In its early years,
computing had to struggle for legitimacy in many institutions.  It was, after all, a new

– 7 –



Computing Curricula 2001 DRAFT (March 6, 2000)

discipline without the historical foundations that support most academic fields.  To
some extent, this problem persisted through the creation of CC1991, which was closely
associated with the Computing as a Discipline report [14].  Partly as a result of the
entry of computing technology into the cultural and economic mainstream, the battle
for legitimacy has largely been won.  On many campuses, computing has become one
of the largest and most active disciplines.  There is no longer any need to defend the
inclusion of computing education within the academy.  The problem today is to find
ways to meet the demand.

• Broadening of the discipline.  As our discipline has grown and gained legitimacy, it
has also broadened in scope.  In its early years, computing was primarily focused on
computer science, which had its roots in mathematics and electrical engineering.  Over
the years, an increasing number of fields have become part of a much larger, more
encompassing discipline of computing.  Our CC2001 Task Force believes that
understanding how those specialties fit together and how the broadening of the
discipline affects computing education must be a critical component of our work.
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Chapter 4
The Expanding Scope of Computing

As we observe in the previous chapter, one of the major changes in computing over the
past decade is the enormous broadening of the field.  In arguing for establishing a broader
view of computing as a profession, Peter Denning has enumerated two dozen professional
specialties that fall into the domain of information technology, as shown in Figure 4-1.
While it is possible to debate this classification scheme, there is no doubt that the
discipline of computing has indeed expanded in recent years.

The expansion of the discipline beyond the traditional boundaries of computer science
certainly has a significant impact in the broad domain of computing education.  At the
same time, the problem of developing a coherent curriculum for the computing field as a
whole is an extremely difficult undertaking, given the enormous breadth of specialties
within the field.  In our early meetings, the CC2001 Task Force decided that viewing
computing narrowly would give us the best chance of reaching closure in a reasonable
time frame.  The earlier curriculum studies took this approach, even as new computing
specialties began to appear on the scene.  Thus, our initial position was that CC2001, like
CC1991 before it, would focus on computer science and computer engineering.
Although we recognized the importance of software engineering and information systems
as disciplines in their own right, we regarded them as being outside our purview.
Professional bodies already exist for those disciplines, and it is certainly important that
curriculum design in those specialties be undertaken by people with the relevant
expertise.  Review committees in several of these areas have recently published new
curriculum studies, such as the MSIS 2000 curriculum for information systems [21] and
the Software Engineering Body of Knowledge (SWEBOK) definition [38].

During our early presentations of the curriculum outline, however, it became clear that
our constituency wanted the CC2001 report to take a broader view.  These sentiments
were expressed strongly at the 1999 Frontiers in Education (FIE) conference in Puerto
Rico, where the audience at the CC2001 panel uniformly supported the idea of
incorporating the breadth of the discipline into the curriculum design for the following
reasons:

• The new disciplines that now comprise the broad field of computing are at least as
important to the academic computing curriculum as traditional computer science.  In
the CC1991 report, “the term computing is used to encompass the labels computer
science [and] computer science and engineering” but specifically excludes programs in
other computing disciplines, such as information systems.  It seems presumptuous for
computer science and computer engineering to lay claim over the entire computing
discipline.

Figure 4-1. The expanding discipline of computing

Artificial intelligence Human-computer interaction Network engineering
Bioinformatics Information science Performance analysis
Cognitive science Information systems Scientific computing
Computational science Instructional design Software architecture
Computer science Knowledge engineering Software engineering
Database engineering Learning theory System administration
Digital library science Management information systems System security and privacy
Graphics Multimedia design Web service design

Source: Peter Denning [16]
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• Narrowing the discipline of computing to its traditional components limits the
evolution of the discipline through synergies with related fields.  As computing
program increase in both breadth and size, it is important to resist the temptation to
compensate by creating highly specialized, independent subdisciplines that rarely share
ideas.  Much of the vitality in computing today comes from the interaction of theory
and practice.  If applications of computing become increasingly separate from the
theoretical underpinnings of computer science, both theory and practice will suffer as a
result.

• Introductory courses that are designed only for potential computer science majors will
not serve the best interests of computing education as a whole.  At most institutions
today, computer science has a high service load, in the sense that many of its courses
are taken by many students who will major in other areas.  Computer science today
serves as a foundation for a broad range of disciplines, in much the same way that
mathematics has done for many years.  Academic departments of mathematics,
however, are often criticized for concentrating their resources on the pure aspects of
the field, even though most of their students, particularly at the introductory level, are
interested in more applied topics.  In the interest of the broad computing curriculum,
computer science should not follow that path.  Students, moreover, need to understand
the range of options that are available in the computing domain, and it is important for
introductory courses not only to prepare students for a range of disciplines but to offer
them guidance about the possibilities.

The steering committee of the CC2001 Task Force discussed the question of scope
extensively at its meeting of January 2000.  The arguments from the respondents at the
FIE conference were compelling, but we were nonetheless concerned about expanding
our coverage of the computing curriculum to accommodate the much wider vision of the
discipline.  For one thing, the members of the CC2001 Task Force are not experts in
many of the expanded specialty areas and would need to rely on professionals and
educators in those domains for curriculum recommendations.  A more important concern
was whether expanding the curriculum to encompass the broad range of computing
disciplines would leave us with any semblance of commonality among the disparate
subfields.  If the overlap in undergraduate curricula were in fact small, broadening the
report might end up reducing its effectiveness for computer science programs without
adding much to programs in related areas.

To get a sense of the scale of the overlap among such disciplines as computer science,
computer engineering, software engineering, and information systems, the CC2001 Task
Force tried to enumerate the set of concept and skills that we would expect
undergraduates to know, regardless of discipline.  The results of that exercise are show in
Figure 4-2.  This list is not intended to be comprehensive, but demonstrates clearly that
there are many common themes that unite the computing discplines..

We therefore decided—somewhat late in the process—to broaden our focus and develop
guidelines for computing curricula that cover a wider range of specialties than the earlier
curriculum reports from IEEE-CS and ACM.  We do not intend to preempt the work of
curriculum committees in related disciplines, but will instead incorporate the excellent
work that has already been done in those areas.  We will continue our work to define a
body of knowledge for computer science.  We will, however, also look at how this body
of knowledge fits into a larger framework that includes other computing disciplines as
well.
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Figure 4-2. Skills common to all computing disciplines

By the time of graduation, every undergraduate student of computing should:

• Know what a computer is and understand the functionality of its major components
• Understand the difference between binary and decimal representations and the effect

of representation on numeric precision
• Be able to use standard computer-based tools, including e-mail, word processing,

and spreadsheets
• Understand the overall mechanics of file systems and directory hierarchies
• Understand the concept of programming language translation and the distinction

between interpreters and compilers
• Understand the basic functions of an operating system
• Appreciate the fact that languages and operating systems create a hierarchy of virtual

machines
• Understand the principle of abstraction and its applications to computing
• Be able to write simple programs in some language
• Understand fundamental data structures and be able to incorporate them into

programs
• Understand the distinction between procedural and object-oriented programming
• Be able to apply basic problem-solving techniques
• Appreciate the concept of an algorithm and the process of algorithmic development
• Recognize the importance of debugging and be able to use testing and debugging

strategies
• Have some understanding of algorithmic efficiency and the fundamental limits of

computing
• Understand and be able to apply fundamental principles of software engineering
• Recognize the existence and utility of standards in the computing field
• Know what a network is and have a general understanding of how it works
• Understand the structure of the World Wide Web and simple techniques for creating

a web page
• Be familiar with the concepts of event-driven and real-time programming
• Understand the basics of the client-server model
• Understand the functionality of databases and information systems
• Be familiar with the fundamental principles of human-computer interaction
• Have sufficient familiarity with discrete mathematics to understand basic logic and

the importance of formalism
• Appreciate the range of areas to which computing can be applied
• Have a rough understanding of the distinctions among the various computing

disciplines
• Understand something about the economics of computing
• Recognize the ethical, legal, and professional responsibilities associated with work

in the computing field
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Chapter 5
Principles

Based on our analysis of past curriculum reports and the changes in our discipline
outlined in the preceding chapters, the CC2001 Task Force has articulated the following
set of principles:

1. Computing has become an extremely broad discipline that extends well beyond the
traditional boundaries of computer science.  Given the number of subdisciplines that
have emerged from computer science in recent years, it is no longer reasonable to
regard the overall computing curriculum as being essentially identical to computer
science.  Colleges and universities must be sensitive to the emergence of these new
fields and ensure that the foundational courses in computing serve a wide audience.

2. Despite its growing breadth, computing remains an integrated field of study that
draws its foundations from many well-established disciplines.  In all of its
subdisciplines, computing draws on basic foundations in mathematics, science,
engineering, psychology, management, and many other fields, each of which requires
the integration of theory and practice.  We endorse the position articulated in the
CC1991 report that “mastery of the discipline includes not only an understanding of
basic subject matter, but also an understanding of the applicability of the concepts to
real-world problems.”  Particular attention must be paid in the undergraduate
curriculum to the importance of laboratory work as it reinforces student mastery of
concepts and their application to solving real-life problems in diverse domains.

3. The rapid evolution of the computing discipline requires an ongoing review of the
corresponding curriculum .  Given the pace of change in our discipline, the process of
updating the curriculum once a decade has become unworkable.  The professional
associations in this discipline must establish an ongoing curriculum review process
that allows individual components of the curriculum to be updated on a recurring
basis.

4. CC2001 must go beyond knowledge units to offer significant guidance in terms of
individual course design.  Although the knowledge-unit structure used in CC1991 can
serve as a useful framework, most institutions need more detailed guidance.  For such
institutions, CC2001 will be effective only to the extent that it defines a small set of
alternative models—preferably between two and four—that assemble the knowledge
units into reasonable, easily implemented courses.  Articulating a set of well-defined
models will make it easier for institutions to share pedagogical strategies and tools.  It
will also provide a framework for publishers who provide the textbooks and other
materials for those courses.

5. CC2001 must identify a relatively small set of core concepts and skills that are
required of all computing students.  Historically, the growth of the discipline has led
to a parallel expansion in the computer science core.  As important new topics
emerge, there is a strong temptation to include them as undergraduate requirements.
Over the last decade, the discipline has expanded to such an extent that it is no longer
possible simply to add new topics without taking others away.  Given the constraints
of an undergraduate degree, it is difficult to include new topics from software
engineering, human-computer interaction, networks, and graphics while retaining the
traditional presentation of such classical topics as assembly language programming,
compiler construction, and automata theory in the traditional way.  It seems likely that
the best strategic approach is to reduce the size of the required computer science core,
allowing greater flexibility to include new topics and adapt the curriculum to changes
as they occur.  The CC2001 Task Force has agreed that “the core will consist of those
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topics for which there is a broad consensus that the topic is essential to undergraduate
degrees that include computer science, computer engineering, and other similarly
named programs.”  This definition is meant to encompass the essential requirements
common to all undergraduate programs.  At the same time, the core does not in itself
constitute a complete undergraduate curriculum, but must be supplemented by
additional courses that may vary by institution, field of study, or individual student.

6. CC2001 must provide guidelines for courses beyond the required core.  In addition to
specifying the fundamental core of the discipline, CC2001 must provide guidelines
for advanced courses that serve as technical electives in more advanced areas.

7. CC2001 must be international in scope.  The intended audience for CC2001 is not
limited to the United States alone, but must instead be useful for computing
professional across the world.  Curricular requirements abroad are often significantly
different from those in the United States.

8. The development of CC2001 must involve significant industry participation.  Most
students who graduate from undergraduate computing programs take jobs in industry,
often without seeking more advanced education.  To ensure that graduates are
properly prepared for the demands they will face in those positions, we believe it is
essential to involve practitioners in the design, development, and implementation of
new curricula.

9. CC2001 must include professional practice as an integral component of the
undergraduate curriculum.  Because computing is an integrated discipline, it is
essential for undergraduate programs to emphasize the practical aspects of the
discipline along with the theoretical ones.  Today, much of the practical knowledge
associated with computing exists in the form of professional practices that exist in
industry.  To work successfully in those environments, students must be exposed to
those practices as part of their education.  These practices, moreover, extend beyond
computing-specific skills to encompass a wide range of activities including
management, ethics and values, written and oral communication, and the ability to
work as part of a team.

10. CC2001 must strive to be useful for its intended audience.  In order to be useful,
CC2001 must (1) support programs seeking accreditation from the Computer Science
Accreditation Board (CSAB), the Accreditation Board for Engineering and
Technology (ABET), and similar organizations outside the United States, (2) be
sufficiently general to fulfill the needs of most computing programs with varying
emphases and objectives, and (3) be flexible enough to accommodate future advances
in the computing discipline in a timely fashion.
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Chapter 6
Defining a Curriculum

In order to develop a curriculum, it is essential to develop a detailed understanding of the
knowledge encompassed by that discipline.  As we note in Chapter 4, the CC2001 Task
Force has decided that this accounting must be broad enough to accommodate the range
of subdisciplines that come under the general rubric of computing.  For areas such as
information systems and software engineering, our task force can rely on recent reports
issued by curriculum committees in those areas [21, 38].  For computer science and
computer engineering, the CC2001 Task Force has the central responsibility for
developing that updated body of knowledge.  To this end, we have identified a set of
knowledge areas and appointed knowledge area focus groups to define the body of
knowledge for that area.  This process is described in more detail in the section entitled
“Defining the body of knowledge” below.

Although the definition of the body of knowledge represents a central task of the
Computing Curricula 2001 project, it is not sufficient on its own.  In some ways, viewing
the entire computing curriculum as a body of knowledge misses the forest for the trees.
To develop a more complete vision of the curriculum and its implementation, it is
important to adopt a more holistic perspective, in which broader issues are allowed to cut
across the lines represented by individual knowledge areas.  The knowledge areas, after
all, reflect the boundaries of established subdisciplines.  Using these boundaries as the
organizing principle for the curriculum has the conservative structure of reinforcing the
existing structure.  New curricular ideas and pedagogical strategies often emerge from
explorations that transcend those disciplinary boundaries.

To encourage the development of a holistic vision of the curriculum, the CC2001 Task
Force established six pedagogy focus groups, with the following areas of concern:

1. Introductory topics and courses
2. Supporting topics and courses
3. The computing core
4. Professional practices
5. Advanced study and undergraduate research
6. Computing across curricula

The charter for each of these groups appears later in this chapter, and the final reports
from each group will—in later drafts—constitute the next six chapters of the report.

6.1  Defining the body of knowledge
Computing Curricula 1991 organized the undergraduate curriculum by dividing it into
nine knowledge areas.  Over the last decade, the discipline of computing has grown
substantially, to the point that the nine areas identified by Computing Curricula 1991 are
no longer sufficient to encompass the knowledge that students are likely to encounter in
an undergraduate curriculum.  After experimenting with several organizational structures,
the CC2001 Task Force has defined an expanded set of 14 knowledge areas, as shown in
Figure 6-1:

This revised list of knowledge areas differs from that used in Computing Curricula 1991
in the following ways:

• Discrete Structures (DS) has been added as a separate area.  In Computing Curricula
1991, discrete mathematics appears only as a prerequisite for topics that require
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Figure 6-1.  Knowledge areas in Computing Curricula 2001

0. Discrete Structures (DS)
1. Programming Fundamentals (PF)
2. Algorithms and Complexity (AL)
3. Programming Languages (PL)
4. Architecture (AR)
5. Operating Systems (OS)
6. Human-Computer Interaction (HC)
7. Graphics, Visualization, and Multimedia (GR)
8. Intelligent Systems (IS)
9. Information Management (IM)

10. Net-Centric Computing (NC)
11. Software Engineering (SE)
12. Computational Science (CN)
13. Social, Ethical, and Professional Issues (SP)

mathematical maturity.  The assumption, presumably, is that such mathematical
maturity would come from prior mathematical training or from college-level courses in
mathematics.  Unfortunately, most mathematics courses in universities—responding to
the needs of the physical sciences and classical engineering fields—focus on calculus
and other aspects of continuous mathematics rather than on the discrete mathematics
required for most computing disciplines.  As a result, the necessary discrete
mathematics is often taught by faculty in computer science or related departments.
The CC2001 Task Force has chosen to emphasize the dependency of computing on
discrete mathematics by including it as a separate knowledge area.

• The need to include instruction in the use of a programming language has been made
explicit by the inclusion of a distinct  knowledge area on Programming Fundamentals
(PF).  Computing Curricula 1991 defined a knowledge area entitled “Introduction to a
Programming Language” but identified it as an optional component of the curriculum.
In part, introductory programming was left out of the common requirements in the
hope that an increasing number of students would acquire the necessary skills and
experience in secondary school.  Unfortunately, this prediction has not been realized.
Despite the overwhelming increase in the availability of computing resources to
secondary schools, many students arrive at universities with little understanding of
programming discipline and the basic principles of software design.  For this reason,
the CC2001 Task Force has chosen to define a separate Programming Fundamentals
area that enumerates the basic programming skills that all students of computing must
acquire to prepare themselves for more advanced study.

• The knowledge area on Social, Ethical, and Professional Issues (SP) has been
integrated into the structure of the curriculum in a way that gives it equal weight with
the other knowledge areas.  Since the publication of Computing Curricula 1991, there
has been a growing consensus that all students of computing must be made aware of
the social implications of their work and the ethical responsibilities of being a
computing professional.  This topic has been identified as a “tenth strand” in the
computing curriculum, on an equal footing with the nine subject areas identified by
Computing Curricula 1991 [27].  The CC2001 Task Force has therefore included
social, ethical, and professional issues as part of the body of knowledge.

• Graphics, Visualization, and Multimedia (GR) and Net-Centric Computing (NC) have
been added as separate knowledge areas.  Many areas of computing have expanded
dramatically since the publication of Computing Curricula 1991.  As a result, some
areas that were formerly topics within a more general area have grown to such an
extent that they can no longer fit appropriately into the older structure.
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Figure 6-2.  Charter for the Knowledge Area Focus Groups

Each focus group assigned to a specific focus area will have a chair and preferably a co-
chair.  The chair and co-chair of each focus area must be experts in the assigned area.
Each focus group may invite up to five additional members.  Each focus group will:

1. Review and firm up the scope of the focus area drafted by the joint task force
members.

2. Finalize the list of individual topics associated with the focus area.
3. Comment on the three processes—theory, abstraction, and design—as well as the

breadth and depth issues documented in Computing Curricula 1991.
4. Decide the required mathematics and physical sciences.
5. Highlight changes compared to Computing Curricula 1991, if applicable.
6. Separate the topics into two levels, corresponding to core topics required of all

students in computing and more advanced electives.
7. Suggest model courses and the corresponding lecture/lab hours, with specific course

objectives and expected learning outcome, by indicating which topics are included
in each course.

After making a preliminary identification of the knowledge areas in early 1999, the
CC2001 Task Force appointed a knowledge area focus group to take responsibility for
each of the areas.  The charge to each knowledge area focus group appears in Figure 6-2.
The members of each focus group appear in the acknowledgments in Chapter 14.

The knowledge area focus groups deliberated over the spring of 1999 and submitted
preliminary reports to the CC2001 Task Force.  The Computing Curricula 1991 steering
committee reviewed these reports at its meeting in June 1999.  The review process at that
meeting had three goals:

1. To monitor the work of each focus group and make sure that it had fulfilled its
charge.  If the steering committee could identify omissions in the report, the focus
groups were asked to go back and resupply the missing material.

2. To review the set of knowledge units identified with each area and assess whether
those knowledge units provide adequate coverage of the area.  Once again, if the
steering committee found problems in the focus group report, it asked the focus group
to provide any necessary updates.

3. To determine which knowledge units in each area would be part of the required core.
Because each knowledge area focus group is composed of experts in that area, the
individuals are likely to have a strong predisposition to be proponents for that area.
As a result, the CC2001 Task Force expected each knowledge area group to identify
more core topics than could be justified under our minimalist definition of the core.
As noted in Chapter 5, the steering committee had agreed that “the core will consist
of those topics for which there is a broad consensus that the topic is essential to
undergraduate degrees. . . .”  If the steering committee itself could not find such a
consensus in support of a topic, we eliminated it from the core.

After some additional negotiations with the focus groups, the CC2001 Task Force has
identified a set of topics to go with each of the 14 areas.  These topics are shown in
Figure 6-3.
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Figure 6-3. Tentative list of topics in the computer science body of knowledge

DS. Discrete Structures
DS1. Functions, relations, and sets
DS2. Basic logic
DS3. Proof techniques
DS4. Basics of counting
DS5. Graphs and trees

PF. Programming Fundamentals
PF1. Algorithms and problem-solving
PF2. Fundamental programming constructs
PF3. Basic data structures
PF4. Recursion
PF5. Abstract data types
PF6. Object-oriented programming
PF7. Event-driven and concurrent programming
PF8. Using modern APIs

AL. Algorithms and Complexity
AL1. Basic algorithmic analysis
AL2. Algorithmic strategies
AL3. Fundamental computing algorithms
AL4. Distributed algorithms
AL5. Basic computability theory
AL6. The complexity classes P and NP
AL7. Automata theory
AL8. Advanced algorithmic analysis
AL9. Cryptographic algorithms
AL10. Geometric algorithms

PL. Programming Languages
PL1. History and overview of programming languages
PL2. Virtual machines
PL3. Introduction to language translation
PL4. Language translation systems
PL5. Type systems
PL6. Models of execution control
PL7. Declaration, modularity, and storage management
PL8. Programming language semantics
PL9. Functional programming paradigms
PL10. Object-oriented programming paradigms
PL11. Language-based constructs for parallelism

AR. Architecture
AR1. Digital logic and digital systems
AR2. Machine level representation of data
AR3. Assembly level machine organization
AR4. Memory system organization
AR5. I/O and communication
AR6. CPU implementation

OS. Operating Systems
OS1. Operating system principles
OS2. Concurrency
OS3. Scheduling and dispatch
OS4. Virtual memory
OS5. Device management
OS6. Security and protection
OS7. File systems and naming
OS8. Real-time systems

HC. Human-Computer Interaction
HC1. Principles of HCI
HC2. Modeling the user
HC3. Interaction
HC4. Window management system design
HC5. Help systems
HC6. Evaluation techniques
HC7. Computer-supported collaborative work

GR. Graphics, Visualization, and Multimedia
GR1. Graphic systems
GR2. Fundamental techniques in graphics
GR3. Basic rendering
GR4. Basic geometric modeling
GR5. Visualization
GR6. Virtual reality
GR7. Computer animation
GR8. Advanced rendering
GR9. Advanced geometric modeling
GR10. Multimedia data technologies
GR11. Compression and decompression
GR12. Multimedia applications and content authoring
GR13. Multimedia servers and filesystems
GR14. Networked and distributed multimedia systems

IS. Intelligent Systems
IS1. Fundamental issues in intelligent systems
IS2. Search and optimization methods
IS3. Knowledge representation and reasoning
IS4. Learning
IS5. Agents
IS6. Computer vision
IS7. Natural language processing
IS8. Pattern recognition
IS9. Advanced machine learning
IS10. Robotics
IS11. Knowledge-based systems
IS12. Neural networks
IS13. Genetic algorithms

IM. Information Management
IM1. Database systems
IM2. Data modeling and the relational model
IM3. Database query languages
IM4. Relational database design
IM5. Transaction processing
IM6. Distributed databases
IM7. Advanced relational database design
IM8. Physical database design

NC. Net-Centric Computing
NC1. Introduction to net-centric computing
NC2. The web as an example of client-server computing
NC3. Building web applications
NC4. Communication and networking
NC5. Distributed object systems
NC6. Collaboration technology and groupware
NC7. Distributed operating systems
NC8. Distributed systems

SE. Software Engineering
SE1. Software processes and metrics
SE2. Software requirements and specifications
SE3. Software design and implementation
SE4. Verification and validation
SE5. Software tools and environments
SE6. Software project methodologies

CN. Computational Science
CN1. Numerical analysis
CN2. Scientific visualization
CN3. Architecture for scientific computing
CN4. Programming for parallel architectures
CN5. Applications

SP. Social, Ethical, and Professional Issues
SP1. History of computing
SP2. Social context of computing
SP3. Methods and tools of analysis
SP4. Professional and ethical responsibilities
SP5. Risks and liabilities of safety-critical systems
SP6. Intellectual property
SP7. Privacy and civil liberties
SP8. Social implications of the Internet
SP9. Computer crime
SP10. Economic issues in computing
SP11. Philosophical foundations of ethics
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6.2  Defining the pedagogical framework
As noted in the introduction to this chapter, defining a body of knowledge for a discipline
is not the same as defining a curriculum.  While the work of the knowledge area groups
in defining the topics that are important within the undergraduate curriculum, it is also
important to take a holistic look at the curriculum that transcends the traditional
disciplinary boundaries.  The CC2001 Task Force established six pedagogy focus groups
with the following charges:

1. Introductory topics and courses
• Identify the goals of the introductory curriculum, typically corresponding to the

first year of study
• Report on both the strengths and weaknesses of the traditional programming-first

approach at reaching these goals
• Provide a short list (ideally consisting of between two and four well-specified

options) of alternative approaches

2. Supporting topics and courses
• Specify goals of courses that support undergraduate computing curricula
• Identify a minimal list of supporting courses deemed essential to an undergraduate

program, as well as additional supporting courses

3. The computing core
• Specify material that is deemed essential to a foundation in computing
• Develop the core as a curricular alternative to the traditional approach of

organizing programs around artifacts (e.g., courses in compilers, operating
systems, databases, and so forth)

4. Professional practices
• Report on effective education in various aspects of professional practices and on

how these needs can be integrated into other courses in the curriculum.

5. Advanced study and undergraduate research
• Report on coursework beyond the core
• Include a specification of how many courses (as a minimum) should be included to

produce a reasonable undergraduate experience
• Report on undergraduate research, including an evaluation of various existing

models

6. Computing across curricula
• Articulate those aspects of the computing discipline relevant to all citizens and

academic disciplines and propose guidelines for the role computer science can play
in helping students achieve that knowledge.

The pedagogy focus groups were formed later in the review process than the counterpart
focus groups examining the knowledge areas.  The work of the pedagogy focus groups,
moreover, is often dependent on the results of the knowledge area focus groups to define
the scope of knowledge.  The pedagogy focus groups have therefore had a shorter time in
which to work.

Despite the limited time, most of the pedagogy focus groups produced draft reports
during the second half of 1999.  These reports outline the overall direction for each group
and serve as a foundation for work over the coming year.  These reports, however, were
drafted prior to the January 2000 decision by the CC2001 Task Force to expand its scope
beyond computer science and computer engineering.  The broadening of the definition of
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the discipline has a substantial effect on the work of many of the pedagogy groups, and
the CC2001 Task Force needs to go back to those groups and ask them to review their
preliminary reports in light of that change.

In light of the recent change in direction, we have chosen not to include the draft reports
from the pedagogy focus groups in this version of the report.  They will instead be
included in the next release, after the groups have had time to integrate the change in
scope.
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Chapter 7-12
Reports from the Pedagogy Focus Groups

Note: These chapters will consists of the reports from the six pedagogy focus
groups.  As discussed at the end of Chapter 6, these groups have not yet had an
opportunity to address the expansion in scope to include a broader range of
computing disciplines.
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Chapter 13
Strategy and Tactics

Note: This chapter will consist of several sections that discuss issues that relate to
the design and implementation of computing curricula but are not necessarily a
part of it.  At the moment, only the section on mathematics and science
requirements is included.  I expect that the final report will include additional
sections on at least the following topics:

• Service courses
• Laboratories and hardware requirements
• Faculty and staff
• Accreditation issues
• Coordination with secondary school curricula
• Articulation issues for two-year colleges

Mathematics and science requirements
In terms of mathematics, the CC2001 Task Force recommends that all students be
required to take a one-semester course in each of the following:

• Discrete mathematics.  All students need exposure to the tools of discrete mathematics.
The required concepts are detailed in the description of the Discrete Structures (DS)
knowledge area.

• Probability and statistics.  All students should have some background in basic
statistical techniques, focusing primarily on discrete probability with some coverage of
mathematical expression and standard statistical measures (normal and Poisson), with
an emphasis on the practical application of these techniques to problems that arise in
the computing discipline.

• Additional mathematics.  Students should take at least one additional course to develop
mathematical sophistication, which might be in any of a number of areas including
calculus, linear algebra, number theory, or symbolic logic.  The choice may be
dependent upon institutional or departmental requirements or individual student need
for advanced courses in computer science.

For science, there is a need for a genuine exposure to the scientific method.  We believe
that any science requirement should allow substantial flexibility in terms of subject
matter, but should include a lab component to provide actual experience with the
scientific method.
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Appendix A
CS Body of Knowledge

The topics shown in Table A-1 represent the body of knowledge for programs in
computer science, as developed by the knowledge area focus groups.  For each area,
topics that are considered essential for all undergraduate programs in computer science
are underlined.  Each of these core topics is also associated with an estimate of the
minimum amount of time that must be devoted to that material.

In future versions of this report, this body of knowledge will be supplemented with others
that cover other disciplines within the computing field.
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Figure A-1. Computer science body of knowledge with core topics underlined

DS. Discrete Structures (37 core hours)
DS1. Functions, relations, and sets (6)
DS2. Basic logic (10)
DS3. Proof techniques (12)
DS4. Basics of counting (5)
DS5. Graphs and trees (4)

PF. Programming Fundamentals (65 core hours)
PF1. Algorithms and problem-solving (8)
PF2. Fundamental programming constructs (10)
PF3. Basic data structures (12)
PF4. Recursion (6)
PF5. Abstract data types (9)
PF6. Object-oriented programming (10)
PF7. Event-driven and concurrent programming (4)
PF8. Using modern APIs (6)

AL. Algorithms and Complexity (31 core hours)
AL1. Basic algorithmic analysis (4)
AL2. Algorithmic strategies (6)
AL3. Fundamental computing algorithms (12)
AL4. Distributed algorithms  (3)
AL5. Basic computability theory (6)
AL6. The complexity classes P and NP
AL7. Automata theory
AL8. Advanced algorithmic analysis
AL9. Cryptographic algorithms
AL10. Geometric algorithms

PL. Programming Languages (5 core hours)
PL1. History and overview of programming languages (2)
PL2. Virtual machines (1)
PL3. Introduction to language translation (2)
PL4. Language translation systems
PL5. Type systems
PL6. Models of execution control
PL7. Declaration, modularity, and storage management
PL8. Programming language semantics
PL9. Functional programming paradigms
PL10. Object-oriented programming paradigms
PL11. Language-based constructs for parallelism

AR. Architecture (33 core hours)
AR1. Digital logic and digital systems (3)
AR2. Machine level representation of data (3)
AR3. Assembly level machine organization (9)
AR4. Memory system organization (5)
AR5. I/O and communication (3)
AR6. CPU implementation (10)

OS. Operating Systems (22 core hours)
OS1. Operating system principles (2)
OS2. Concurrency (6)
OS3. Scheduling and dispatch (3)
OS4. Virtual memory (3)
OS5. Device management (2)
OS6. Security and protection (3)
OS7. File systems and naming (3)
OS8. Real-time systems

HC. Human-Computer Interaction (3 core hours)
HC1. Principles of HCI (3)
HC2. Modeling the user
HC3. Interaction
HC4. Window management system design
HC5. Help systems
HC6. Evaluation techniques
HC7. Computer-supported collaborative work

GR. Graphics (no core hours)
GR1. Graphic systems
GR2. Fundamental techniques in graphics
GR3. Basic rendering

GR4. Basic geometric modeling
GR5. Visualization
GR6. Virtual reality
GR7. Computer animation
GR8. Advanced rendering
GR9. Advanced geometric modeling
GR10. Multimedia data technologies
GR11. Compression and decompression
GR12. Multimedia applications and content authoring
GR13. Multimedia servers and filesystems
GR14. Networked and distributed multimedia systems

IS. Intelligent Systems (10 core hours)
IS1. Fundamental issues in intelligent systems (2)
IS2. Search and optimization methods (4)
IS3. Knowledge representation and reasoning (4)
IS4. Learning
IS5. Agents
IS6. Computer vision
IS7. Natural language processing
IS8. Pattern recognition
IS9. Advanced machine learning
IS10. Robotics
IS11. Knowledge-based systems
IS12. Neural networks
IS13. Genetic algorithms

IM. Information Management (10 core hours)
IM1. Database systems (2)
IM2. Data modeling and the relational model (8)
IM3. Database query languages
IM4. Relational database design
IM5. Transaction processing
IM6. Distributed databases
IM7. Advanced relational database design
IM8. Physical database design

NC. Net-Centric Computing (15 core hours)
NC1. Introduction to net-centric computing (9)
NC2. The web as an example of client-server computing (6)
NC3. Building web applications
NC4. Communication and networking
NC5. Distributed object systems
NC6. Collaboration technology and groupware
NC7. Distributed operating systems
NC8. Distributed systems

SE. Software Engineering (30 core hours)
SE1. Software processes and metrics (6)
SE2. Software requirements and specifications (6)
SE3. Software design and implementation (6)
SE4. Verification and validation (6)
SE5. Software tools and environments (3)
SE6. Software project methodologies (3)

CN. Computational Science (no core hours)
CN1. Numerical analysis
CN2. Scientific visualization
CN3. Architecture for scientific computing
CN4. Programming for parallel architectures
CN5. Applications

SP. Social and Professional Issues (16 core hours)
SP1. History of computing (1)
SP2. Social context of computing (2)
SP3. Methods and tools of analysis (2)
SP4. Professional and ethical responsibilities (2)
SP5. Risks and liabilities of safety-critical systems (2)
SP6. Intellectual property (3)
SP7. Privacy and civil liberties (2)
SP8. Social implications of the Internet (2)
SP9. Computer crime
SP10. Economic issues in computing
SP11. Philosophical foundations of ethics
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DS. Discrete Structures (37 core hours)

DS1. Functions, relations, and sets (core—6 hours)
Functions (surjections, injections, inverses, composition)
Relations (reflexivity, symmetry, transitivity, equivalence relations)
Sets (Venn diagrams, complements, Cartesian products, power sets)
Pigeonhole principle
Cardinality and countability

DS2. Basic logic (core—10 hours)
Propositional logic
Logical connectives
Truth tables
Validity
Implication, converse, inverse, negation, contradiction
Predicate logic
Limitations of predicate logic
Universal and existential quantification
Modus ponens and modus tallens

DS3. Proof techniques (core—12 hours)
The structure of formal proofs
Direct proofs
Proof by counterexample
Proof by contraposition
Proof by contradiction
Mathematical induction
Strong induction
Recursive mathematical definitions
Well orderings

DS4. Basics of counting (core—5 hours)
Counting arguments
Permutations and combinations
Solving recurrence relations

DS5. Graphs and trees (core—4 hours)
Trees
Undirected graphs
Directed graphs
Spanning trees
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PF. Programming Fundamentals (65 core hours)

PF1. Algorithms and problem-solving (core—8 hours)
Problem-solving strategies
Debugging strategies
Structured decomposition
The concept and properties of algorithms
The role of algorithms in the problem-solving process
Introduction to algorithmic complexity
Empirical measurements of performance

PF2. Fundamental programming constructs (core—10 hours)
Basic syntax and semantics of a higher-level language
Variables, types, and assignment
Conditional and iterative control structures
Functions and parameter passing
Simple I/O
Exception handling

PF3. Basic data structures (core—12 hours)
Primitive types
Arrays
Records
Strings and string processing
Data representation in memory
Pointers (or the notion of a reference in an object-oriented language)
Linked structures
Static, stack, and heap allocation
Runtime storage management
Strategies for choosing the right data structure

PF4. Recursion (core—6 hours)
The concept of recursion
Recursive mathematical functions
Simple recursive procedures (Towers of Hanoi, generating permutations)
Divide-and-conquer strategies
Recursive backtracking
Implementation of recursion

PF5. Abstract data types (core—9 hours)
The importance of data abstraction
Abstract programming interfaces
Abstract data types
Encapsulation and levels of visibility
Information hiding
Iteration protocols
Specific ADT structures (stacks, queues, symbol tables, trees, graphs)

PF6. Object-oriented programming (core—10 hours)
Object-oriented design
Classes, subclasses, and inheritance
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Class hierarchies
Polymorphism
Fundamental design patterns

PF7. Event-driven and concurrent programming (core—4 hours)
Event-handling methods
Event propagation
Managing concurrency in event handling

PF8. Using modern APIs (core—6 hours)
API programming
Class browsers and related tools
Programming by example
Debugging in the API environment
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AL. Algorithms and Complexity (31 core hours)

AL1. Basic algorithmic analysis (core—4 hours)
Asymptotic analysis of upper and average complexity bounds
Identifying differences among best, average, and worst case behaviors
Big “O” and little “o” notation
Standard complexity classes
Time and space tradeoffs in algorithms
Using recurrence relations to analyze recursive algorithms

AL2. Algorithmic strategies (core—6 hours)
Brute-force algorithms
Greedy algorithms
Divide-and-conquer
Backtracking
Branch-and-bound
Heuristics
Pattern matching and string/text algorithms
Numerical approximation algorithms

AL3. Fundamental computing algorithms (core—12 hours)
Simple numerical algorithms
Sequential and binary search algorithms
Quadratic sorting algorithms (selection, insertion)
O(N log N) sorting algorithms (Quicksort, heapsort, mergesort)
Hash tables, including collision-avoidance strategies
Binary search trees
Representations of graphs (adjacency list, adjacency matrix)
Depth- and breadth-first traversals
Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
Transitive closure (Floyd’s algorithm)
Minimum spanning tree (Prim’s and Kruskal’s algorithms)
Topological sort

AL4. Distributed algorithms  (core—3 hours)
Consensus and election
Termination detection
Fault tolerance
Stabilization

AL5. Basic computability theory (core—6 hours)
Finite-state machines
Context-free grammars
Uncomputable functions
The halting problem
Implications of uncomputability

AL6. The complexity classes P and NP
Tractable and intractable problems
Definition of the classes P and NP
NP-completeness (Cook’s theorem)
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Standard NP-complete problems
Reduction techniques

AL7. Automata theory
Deterministic finite automata (DFAs)
Nondeterministic finite automata (NFAs)
Equivalence of DFAs and NFAs
Regular expressions
The pumping lemma for regular expressions
Push-down automata (PDAs)
Relationship of PDAs and context-free grammars
Properties of context-free grammars
Turing machines
Nondeterministic Turing machines
Sets and languages
Chomsky hierarchy

AL8. Advanced algorithmic analysis
Amortized analysis
Online and offline algorithms
Randomized algorithms
Dynamic programming
Combinatorial optimization

AL9. Cryptographic algorithms
Historical overview of cryptography
Private-key cryptography and the key-exchange problem
Public-key cryptography
Digital signatures
Security protocols
Applications (zero-knowledge proofs, authentication, and so on)

AL10. Geometric algorithms
Line segments: properties, intersections
Convex hull finding algorithms
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PL. Programming Languages (5 core hours)

PL1. History and overview of programming languages (core—2 hours)
Early languages (FORTRAN, ALGOL, COBOL, LISP, BASIC)
The evolution of procedural languages
Object-oriented paradigm and languages
Mostly-functional, algorithmic, higher-order languages with eager evaluation
Purely-functional, algorithmic paradigm
Declarative (non-algorithmic) languages
Parallel programming paradigms
Scripting paradigm

PL2. Virtual machines (core—1 hour)
What is a virtual machine?
Hierarchy of virtual machines presented to the user

PL3. Introduction to language translation (core—2 hours)
Comparison of pure interpreters vs. compilers
Language translation phases (lexical analysis, parsing, code generation, optimization)

PL4. Language translation systems
Application of regular expressions in lexical scanners
Parsing (concrete and abstract syntax, abstract syntax trees)
Code generation by tree walking
Optimization techniques
Application of CFGs in table-driven and recursive descent parsing

PL5. Type systems
Data type as set of values with set of operations
Data types (elementary, product, coproduct, algebraic, recursive, arrow, parameterized)
Type checking models
Semantic models of user-defined types (type abbreviations, ADTs, type equality)
Parametric polymorphism
Subtype polymorphism
Type-checking algorithms

PL6. Models of execution control
Order of evaluation of sub-expressions
Exceptions and exception handling
Parallel composition (S1||S2)
Functions with delayed evaluation (closures, lazy evaluation)

PL7. Declaration, modularity, and storage management
Declaration models (binding, visibility, scope, and lifetime)
Parameterization mechanisms
Type parameterization
Mechanisms for sharing and restricting visibility of declarations
Garbage collection
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PL8. Programming language semantics
Informal semantics
Overview of formal semantics
Denotational Semantics.
Axiomatic Semantics

PL9. Functional programming paradigms
Overview and motivation
Recursion over lists, natural numbers, trees, and other recursively-defined data
Pragmatics (debugging by divide and conquer; persistency of data structures)
Amortized efficiency for functional data structures
Closures, and uses of functions as data (infinite sets, streams)

PL10. Object-oriented programming paradigms
Mechanisms for defining classes and instances
Object creation and initialization
Inheritance and dynamic dispatch
Sketch of run-time representation of objects and method tables
Distinction between subtyping and inheritance
Advanced OO type problems

PL11. Language-based constructs for parallelism
Communication primitives for tasking models with explicit communication
Communication primitives for tasking models with shared memory
Programming primitives for data-parallel models
Comparison of language features for parallel and distributed programming
Optimistic concurrency control vs. locking and transactions
Coordination languages (Linda)
Asynchronous remote procedure calls (pipes)
Other approaches (functional, nondeterministic)
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AR. Architecture (33 core hours)

AR1. Digital logic and digital systems (core—3 hours)
Simple building blocks (logic gates, flip-flops, counters, registers)
Logic expressions
Simple adders, structure of a simple arithmetic-logic unit (ALU)

AR2. Machine level representation of data (core—3 hours)
Numeric data representation and number bases
Fixed- and floating-point systems
Signed and twos-complement representations
Representation of nonnumeric data

AR3. Assembly level machine organization (core—9 hours)
Basic organization
Control unit; instruction fetch, decode, and execution
Instruction sets and types (data manipulation, control, I/O)
Assembly/machine language programming
Instruction formats
Addressing modes
I/O and interrupts

AR4. Memory system organization (core—5 hours)
Storage systems and technology
Memory hierarchy
Main memory organization and operations
Latency, cycle time, bandwidth, and interleaving
Cache memories (address mapping, replacement and store policy)

AR5. I/O and communication (core—3 hours)
Input/output control methods, interrupts
Synchronization, open loop, handshaking
External storage, physical organization, and drives
Bus systems, control, direct-memory access (DMA)

AR6. CPU implementation (core—10 hours)
Hardwired realization of CPU
Microprogrammed realization; formats and coding
Varieties of instruction formats
Architectural support for operating systems and compilers
Instruction pipelining
Introduction to instruction-level parallelism (ILP)
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OS. Operating Systems (22 core hours)

OS1. Operating system principles (core—2 hours)
Structuring methods and the layered model
Applications needs and the evolution of hardware/software techniques
Device organization
Interrupts: methods and implementations
Concept of user/system state and protection

OS2. Concurrency (core—6 hours)
States and state diagrams
Structures (ready list, process control blocks, and so forth)
Dispatching and context switching
The role of interrupts
Concurrent execution
The “mutual exclusion” problem
Deadlock: causes, conditions, prevention
Models and mechanisms (semaphores, monitors, rendezvous)
Producer-consumer problems

OS3. Scheduling and dispatch (core—3 hours)
Preemptive and nonpreemptive scheduling
Schedulers and policies
Processes and threads
Deadlines and real-time issues

OS4. Virtual memory (core—3 hours)
Review of physical memory and memory management hardware
Overlays, swapping, and partitions
Paging and segmentation
Memory mapped files
Placement and replacement policies
Working sets and thrashing

OS5. Device management (core—2 hours)
Characteristics of a serial or parallel device
Buffering strategies
Free lists and device layout
Servers and interrupts
Recovery from failures

OS6. Security and protection (core—3 hours)
Overview of system security
Security methods and devices
Protection, access, and authentication
Models of protection
Memory protection
Encryption
Recovery management
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OS7. File systems and naming (core—3 hours)
File layout
Directories: contents and structure
Naming, searching, access, backups
Fundamental file concepts (organization, blocking, buffering)
Sequential files
Nonsequential files

OS8. Real-time systems
Process and task scheduling
Memory and disk management
Failures, risks, and recovery
Special concerns in real-time systems
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HC. Human-Computer Interaction (3 core hours)

HC1. Principles of HCI (core—3 hours)
Conceptual Models
Mapping
Affordances
Constraints
Seven Stages of Action
Schneiderman’s 8 Golden Rules
Information Visualization

HC2. Modeling the user
Model Human Processor
Keystroke Level Model
Fitt’s law

HC3. Interaction
Input devices (Keyboard, Pointing, Voice)
Output devices (Displays, Color, Sound)
Interaction Styles (direct manipulation, menu selection, form-fill-in, command
languages)

HC4. Window management system design
Windows
Icons
Menus
Dialogue Boxes
Concepts (grids, simplicity, consistency, white space)

HC5. Help systems
Context Sensitive Help
Tutorials
Reference Material

HC6. Evaluation techniques
Cognitive Walkthrough
Heuristic Evaluation
Expert Reviews
Controlled Experiments (subjects, dependant & independent variables, statistics)

HC7. Computer-supported collaborative work
Synchronous / Asynchronous tools
Audio / Video
Shared Workspaces
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GR. Graphics, Visualization, and Multimedia (nothing in core)

GR1. Graphic systems
Raster and vector graphics system
Video display devices
Physical and logical input devices
Issues facing the developer of graphical systems
Hierarchy of graphics software
User interface

GR2. Fundamental techniques in graphics
Halftoning
Font generation: outline vs. bitmap
Representation of polyhedral objects
Scan conversion of 2D primitive, forward differencing
Tessellation of curved surfaces
Homogeneous coordinates
Affine transformations (scaling, rotation, translation)
Viewing transformation
Clipping
Hidden surface removal methods
Z-buffer and frame buffer, color channels (a channel for opacity)

GR3. Basic rendering
Color models (RGB, HVS, CYM)
Light source properties; material properties; ambient, diffuse, and specular reflections
Phong reflection model
Rendering of a polygonal surface, flat shading, Gouraud shading, and Phong shading
Texture mapping, bump texture, environment map
Ray tracing
Image synthesis, sampling techniques, and anti-aliasing

GR4. Basic geometric modeling
Parametric polynomial curves and surfaces
Implicit curves and surfaces
Bézier curves and surfaces, control points, de Casteljau algorithm
B-spline curves and surfaces, local editing, knots, control points
NURBS curves and surfaces
Constructive Solid Geometry (CSG) for solid modeling
Boundary Representation of solids (B-Rep)

GR5. Visualization
Basic viewing and interrogation functions for visualization
Visualization of vector fields, tensors, and flow data
Visualization of scalar field or height field: iso-surface by the marching cube method
Direct volume data rendering: ray-casting, transfer functions, segmentation, hardware

GR6. Virtual reality
Stereoscopic display
Force feedback simulation, haptic devices
Viewer tracking
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Collision detection
Visibility computation
Time-critical rendering, multiple levels of details (LOD)
Image-base VR system
Distributed VR, collaboration over computer network
Interactive modeling
User interface issues
Applications in medicine, simulation, and training

GR7. Computer animation
Color animation
Physical based animation
Animation of articulated structures: forward and inverse kinematics
Scripting system
Key-frame animation, inbetweening, quaternions for orientation representation
Motion capture
Behavioral and procedural animation, particle system
Metamorphosis
Free-form deformation

GR8. Advanced rendering
Shadow computation
Radiosity for global illumination computation, form factors
A two-pass approach to global illumination
Monte Carlo methods for global illumination
Image-based rendering, panorama viewing, plenoptic function modeling and sampling
Rendering of complex natural phenomenon
Non-photorealistic rendering

GR9. Advanced geometric modeling
Implicit surfaces, soft object
Algebraic curves and surfaces
Subdivision surfaces
Multi-resolution analysis of polygonal meshes, wavelets
Deformable models: snakes and balloons (active contours)
Procedural modeling, fractals
3D model acquisition from range data
3D data fitting
Geometric operations, intersection, blending, faring, offsetting, sweeping, etc.

GR10. Multimedia data technologies
Analog and digital representations, human perception
Sound and audio, image and graphics, animation and video
Standard file formats for audio, graphics and image data
Standards for videoconferencing, computer telephony and motion pictures
TV broadcasting standards
Display and input devices
Digital cameras and scanners
Buses, I/O channels
Tape, disk and RAID
CD and DVD ROM standards
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GR11. Compression and decompression
Information theory
Lossless compression techniques
Digital audio compression
DCT, wavelet and fractal compressions
Scalable and progressive encoding
H.26x and Mpeg video compression standards

GR12. Multimedia applications and content authoring
Multimedia applications and requirements
Design issues for content authoring
Human computer interface basics
Authoring tools and production systems
Web authoring and programming
Interactive multimedia titles

GR13. Multimedia servers and filesystems
Multimedia server requirements
RAID storage systems
Storage hierarchy
Data placement on disks
Buffer management
QOS support and admission control
Processor scheduling
Disk scheduling
Multimedia information management systems
Provision of user interactivity
Content-based information retrieval

GR14. Networked and distributed multimedia systems
Characteristics of multimedia communications
Layers, protocols and services
Local area networks (LAN) and wide area networks (WAN)
ATM and ISDN for multimedia communications
MBONE multicast and applications
Admission control, QOS negotiation and traffic policing
Distributed multimedia systems, client-serve concepts
Server configuration and network connection
Streaming servers and network scheduling
Networked multimedia synchronization
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IS. Intelligent Systems (10 core hours)

IS1. Fundamental issues in intelligent systems (core—2 hours)
Definitions of intelligent systems
Optimality vs. speed tradeoff

IS2. Search and optimization methods (core—4 hours)
Problem spaces
Brute-force search (DFS, BFS, uniform cost search)
Heuristic search (best-first, A*, IDA*)
Local search (hill-climbing, simulated annealing, genetic search)
Game-playing methods (minimax search, alpha-beta pruning)
Constraint satisfaction (backtracking and heuristic repair)

IS3. Knowledge representation and reasoning (core—4 hours)
Representation of space and time
Representations of events and actions
Probabilistic reasoning
Bayes theorem
Predicate calculus and resolution
Logic programming and theorem proving
AI planning systems

IS4. Learning
Unsupervised vs. supervised learning
Inductive vs. deductive
Classification vs. clustering vs. prediction
Decision tree learning and neural network learning as examples

IS5. Agents
Action selection and planning
Collaboration between people and agents
Communication between people and agents
Expert assistants
Agent architectures
Interacting with stochastic environments
Reinforcement learning
Multi-agent systems
Game theory and auctions

IS6. Computer vision
Image acquisition, processing, and display
Edge detection
Camera models
Calibration of camera models from images
Color constancy
Texture
Segmentation
Object recognition
Motion
Tracking
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IS7. Natural language processing
Deterministic and stochastic grammars
Parsing algorithms
Corpus-based methods
Information retrieval
Language translation

IS8. Pattern recognition
Statistical pattern recognition
Syntactic pattern recognition
Bayesian decision theory
Linear discriminant functions
Feature extraction for representation
Feature extraction for classification
Supervised learning
Unsupervised learning and clustering

IS9. Advanced machine learning
Learning belief networks
Decision-tree learning
Reinforcement learning algorithms
Neural net learning
Genetic algorithms and evolutionary programming
Inductive logic programming
PAC learning and beyond

IS10. Robotics
Navigation and control
Optimization and learning
Perception
Path planning
Direct and inverse kinematics
Robot programming
Robot simulation environments

IS11. Knowledge-based systems
Design and development of knowledge-based systems
Knowledge representation mechanisms
Reasoning with uncertainty (nonmonotonic logics, certainty factors, fuzzy logic)
Knowledge acquisition techniques
Knowledge engineering
Tools for knowledge-based system development

IS12. Neural networks
Single-layer networks
Supervised learning
Multi-layer perceptrons and back-propagation
Competitive learning networks
Examples of multi-layer networks
Other network architectures and their applications
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IS13. Genetic algorithms
Brief history of evolutionary computation
Theoretical foundations of genetic algorithms
Implementing a genetic algorithm
Applications of genetic algorithms
Genetic programming
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IM. Information Management (10 core hours)

IM1. Database systems (core—2 hours)
History and motivation for database systems
Components of database systems
DBMS functions
Database architecture and data independence
Recent developments and applications (hypertext, hypermedia, multimedia)

IM2. Data modeling and the relational model (core—8 hours)
Data modeling
Entity-Relationship model
Object-Oriented model
Relational data model
Mapping conceptual schema to a relational schema
Entity and referential integrity
Relational algebra and relational calculus

IM3. Database query languages
Overview of database languages
SQL (data definition, query formulation, update sublanguage, constraints, integrity)
QBE and 4th generation environments
Introduction to Object Query Language
Embedding non-procedural queries in a procedural language

IM4. Relational database design
Database design
Functional dependency
Normal forms (1NF, 2NF, 3NF, BCNF)

IM5. Transaction processing
Transactions
Failure and Recovery
Concurrency Control

IM6. Distributed databases
Distributed data storage
Distributed query processing
Distributed transaction model
Concurrency control

IM7. Advanced relational database design
Multivalued dependency (4NF)
Join dependency (PJNF, 5NF)
Representation theory

IM8. Physical database design
Storage and file structure
Indexed files
Hashed files
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B-trees
Files with dense index
Files with variable length records
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NC. Net-Centric Computing (15 core hours)

NC1. Introduction to net-centric computing (core—9 hours)
Background and history of the Internet
The architecture of the Internet
The five-layer reference model (physical, data link, network, transport, application)
Host name resolution and the Domain Name Service
Public-key cryptography and digital certificates
Distributed computing
Networked multimedia systems

NC2. The web as an example of client-server computing (core—6 hours)
Introduction to client-server programming
Designing clients and servers
Introduction to the technologies of the web (URLs, HTML, HTTP, applets, etc.)

NC3. Building web applications
JavaScript and other client-side programming within a web browser
CGI and other server-side programming with web-based application servers

NC4. Communication and networking
Protocol suites
Streams and datagrams
Client-server communication and group communication
Remote procedure calls
Internetworking and routing

NC5. Distributed object systems
Serializing objects
Persistent objects
Remote procedure calls
Distributed object frameworks
Java’s distributed object framework (JavaBeans, Java RMI, and JINI)
COM and DCOM as distributed object framework
CORBA and IDL
Lightweight distributed objects with XML
Security issues in distributed object systems

NC6. Collaboration technology and groupware
Audio/video interpersonal applications
Shared workspace for computer-supported collaborative work
Audio/video distribution
Audio/videoconferencing
Multimedia document transfer
Multimedia server-based applications
Virtual reality
Emerging topics in CSCW

NC7. Distributed operating systems
Distributed processes and threads
Distributed file systems
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Name services
Time, synchronization and coordination
Replication
Concurrency control
Shared and distributed transactions
Distributed shared memory

NC8. Distributed systems
Characterization of distributed systems
Partition and allocation of distributed tasks
Load balancing of distributed systems
Modeling and analysis of distributed systems
Distributed languages
Fault tolerance and recovery
Security issues of distributed systems
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SE. Software Engineering (30 core hours)

SE1. Software processes and metrics (core—6 hours)
Software life-cycle and process models
Software metrics (product and process metrics)
Introduction to software standards and documentation
Software quality assurance
Configuration management and control
Project planning and risk management
Software estimation
Software maintenance and re-engineering

SE2. Software requirements and specifications (core—6 hours)
Requirements elicitation, review and acceptance
Requirements modeling, analysis and specification
Rapid prototyping
Formal and executable specifications

SE3. Software design and implementation (core—6 hours)
Using the requirements specification document
Introduction to software architecture
Object-oriented decomposition and design
Functional decomposition and structured design
Design experimentation and prototyping
Detailed design and implementation
Design reviews

SE4. Verification and validation (core—6 hours)
Aspects of quality and their importance (reliability, correctness, etc.)
Quality assurance techniques and the software development process
Testing methods (acceptance, integration, unit; black box vs. white box testing)
Coverage measures (line, condition, branch)
Testing specialized classes of applications (real-time, embedded, database, web, GUI)
Concepts of formal verification (assertions, invariants, pre- and post-conditions)
Software testing management (test plan development, test case design, tracking, release
engineering)

SE5. Software tools and environments (core—3 hours)
History of development tools and environments; the significance of Unix
Programming environments (integrated editors, compilers, interpreters, debuggers)
Modeling tools (structured, object-oriented, database, and GUI modeling)
Testing tools (test coverage, defect tracking, test management)
Product management (version control, configuration management)
Tool integration mechanisms (control integration, COM and CORBA, repositories)

SE6. Software project methodologies (core—3 hours)
Team management
Project planning
Requirements engineering
Design specification and review
Product engineering
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Software quality assurance
Software configuration management
Documentation
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CN. Computational Science (nothing in core)

CN1. Numerical analysis
Floating-point arithmetic
Error, stability, convergence
Taylor’s series
Iterative solutions for finding roots (Newton’s Method)
Curve fitting; function approximation
Numerical differentiation and integration (Simpson’s Rule)
Explicit and implicit methods
Differential equations (Euler’s Method)
Linear algebra
Finite differences

CN2. Scientific visualization
Concepts
Tools
Examples

CN3. Architecture for scientific computing
Vector architecture and pipelining
MIMD machines
Distributed systems and the network-of-workstations (NOW) approach
Networks
Timing, measurement, terminology (MFLOPS, and so forth)
Benchmarks and elementary performance measurement

CN4. Programming for parallel architectures
Review of parallel programming techniques
Parallel algorithms for scientific computation
Effects of array element and loop ordering
Example languages

CN5. Applications
Simulation
Molecular dynamics
Fluid dynamics
Celestial mechanics
Optimization (linear programming, integer programming, dynamic programming)
Structural analysis
Geology
Computerized tomography
Military and defense applications
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SP. Social, Ethical, and Professional Issues (16 core hours)

SP1. History of computing (core—1 hour)
History of computer hardware
History of computer software
History of networking
Pioneers of computing

SP2. Social context of computing (core—2 hours)
Introduction to the social implications of computing
Social implications of networked communication
Overview of intellectual property issues in computing

SP3. Methods and tools of analysis (core—2 hours)
Making and evaluating ethical arguments
Identifying and evaluating ethical choices
Understanding the social context of design
Identifying assumptions and values

SP4. Professional and ethical responsibilities (core—2 hours)
The nature of professionalism
The role of the professional in public policy
Maintaining awareness of consequences
Ethical dissent
Codes of ethics

SP5. Risks and liabilities of safety-critical systems (core—2 hours)
Historical examples of software risks (such as the Therac-25 case)
Implications of software complexity
Risk assessment and management

SP6. Intellectual property (core—3 hours)
Foundations of intellectual property
Copyrights, patents, and trade secrets
Software piracy
Software patents and the look-and-feel debate
International issues concerning intellectual property

SP7. Privacy and civil liberties (core—2 hours)
Historical basis for privacy protection
Privacy implications of massive database systems
The “Code of Fair Information Practices”
Technological strategies for privacy protection
Freedom of expression in cyberspace
Restrictions on expression
International and intercultural implications

SP8. Social implications of the Internet (core—2 hours)
History and growth of the Internet
Control of the Internet
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The nature of online communication
Online communities
Access to the Internet
International implications

SP9. Computer crime
History and examples of computer crime
Hacking and its effects
Viruses, worms, and Trojan horses
Crime prevention strategies

SP10. Economic issues in computing
Monopolies and their economic implications
Labor shortages in computing
Pricing strategies in the computing domain
Inequalities of access based on economic class

SP11. Philosophical foundations of ethics
Philosophical frameworks (consequentialist and deontological theories)
Problems of ethical relativism
Scientific ethics in historical perspective
Differences in scientific and philosophical approaches
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