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ABSTRACT
Network researchers today are unable to test their new ideas at
scale before deployment due to the prohibitive costs of custom
testbeds and the slow speed of large-scale network simulators.
Data center simulation is particularly slow because of the
massive amount of bandwidth and high degree of redundant
computation incurred in simulating the network stacks of
thousands of commodity machines. By using approximation
to replace redundant portions of the simulation, we improve
computation time while retaining high accuracy.

1 INTRODUCTION
The past few years have seen a staggering proliferation of
interesting and novel ideas toward improving the performance
and reliability of data center networks [3, 4, 8, 11, 21]. A
testament to the intellectual curiosity and creativity of the
networking community, these proposals span all layers of the
stack and frequently demonstrate promising results.

Despite this, innovation in data centers faces a difficult
challenge. As some of the largest networks in existence, re-
searchers (and most data center operators) typically do not
have spares lying around for the sole purpose of testing new
ideas. How then do we evaluate a new data center proposal?

A brief survey of recently published data center network-
ing research reveals two general approaches. The first is to
assume that behavior on a small test bed scales directly. While
accurate at a per-node-level, cost concerns mean that these
experiments rarely encompass more than a few racks; test
beds with device counts that are several orders of magnitude
smaller than production deployments fail to capture a wide
range of behavior that can only be seen at scale. Incremen-
tal rollouts to a production network suffer from the same
limitations with the added risk of catastrophic failures.

Slightly better are packet-level simulations that allow users
to deploy arbitrary systems at arbitrary scale. In principle,
these can provide an approximate sense for at-scale network
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Figure 1: OMNeT++ performance on leaf-spine topolo-
gies of various size. Even for these small cases, 5 minutes
of simulation time takes multiple days to process.

behavior; however, these too are limited in size. Figure 1
shows the performance of OMNeT++ simulations of several
leaf-spine topologies (methodology in Section 2.2). Even
for these small cases, simulation is 3–4 orders of magnitude
slower than real-time (it takes 15 minutes to obtain a single
second of simulated behavior, and over a month to obtain
just 1 hour of data). The natural approach of using multi-
core execution can actually reduce performance compared
to a single thread due to the highly interconnected nature of
data center networks. The other approach of running multiple
single-threaded instances increases throughput, but not the
time to a useful result. In the end, the tools to evaluate these
new protocols lag behind the ideas themselves.

The approach we propose in this paper takes inspiration
from another big (literally) problem: global climate model-
ing. In climate modeling, researchers predict the behavior
of the Earth’s climate using simulations of the atmosphere
and oceans. As the Earth is too complex a system to model
exactly, a common technique is to partition it into sub-regions
such that much of the complexity can be approximated locally,
with the inter-cell interface handled at a higher-level. In this
paper, we argue that the data center can benefit from a similar
partitioning and approximation-based approach.

We propose to divide the data center into several regions,
then construct a fast, accurate machine-learning approxima-
tion of each region. One region can be left unapproximated so
as to allow arbitrary packet-level analysis of behavior. Thus,
when a user wishes to test a new protocol they would, at
packet-level granularity, simulate (1) a small but full-fidelity
network containing a single machine, rack, or cluster con-
nected to (2) a large network of ML models that faithfully
and efficiently approximate the rest of the data center.
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We note that deep learning models to approximate complex
systems have been successfully applied to similar tasks [7,
12, 33]. Among deep learning methods, recurrent neural net-
works, particularly long-short term memory models (LSTMs)
[14], are promising candidates for this problem. LSTMs pro-
vide a flexible, non-linear mechanism for forecasting. One of
the main advantages of deep learning models is that due to
their highly non-linear nature, the hidden state of the LSTM
can capture complex underlying relationships without explicit
feature engineering. While the upfront cost of training these
models is high, once trained they are cheap to run, reusable,
and beneficial to asymptotic behavior.

The point of this paper, however, is not to present a com-
plete design for such a system. Instead, our goal is simply
to argue for the promise of an ML-based approximation ap-
proach to simulation of data center networks. Major chal-
lenges remain, such as how to model network behavior ac-
curately, how to balance accuracy and speed of simulation,
the correct interface between simulated regions of the net-
work, and how to generalize from smaller networks to larger
ones. Our results, though preliminary, are encouraging—they
demonstrate a different approach to using machine learning
to assist in the evaluation of large systems.

2 MOTIVATION
Modern data center networks are composed of up to hundreds
of thousands of devices that, in aggregate, are capable of
processing hundreds of billions of packets per second. They
achieve this via scale-out network architectures, and in par-
ticular, Clos networks like the one in Figure 2 [2, 28]. In
a canonical 3-layer deployment, the layers from bottom to
top, consist of servers, Top-of-Rack (ToR) switches, Cluster
switches, and Core switches. We refer to the components
under a single ToR as a rack, and the subtree of components
under and including a group of Cluster switches as a cluster.

2.1 Background on Network Simulation
Recent work has touched on every part of the above architec-
ture, from forwarding table implementation in the switches
to congestion control on the hosts. Simulations are a popular
tool with which to evaluate these ideas in a controlled way.

Many approaches for simulation exist, including flow-level
systems, closed-form solutions, and a vast array of optimized
custom simulators. These solutions assume an idealized and
approximate view of the network, but are limited in their
generality and the types of phenomena they can detect. For
that reason, packet-level simulators are the preferred approach
for most use cases. Within that category, most use Discrete
Event Simulation (DES), e.g., ns-2, ns-3, and OMNeT++. In
DES, network behavior is represented as a series of events
(packets, timeouts, etc.) in a temporally ordered event queue.
DES is a useful technique in packet-level simulation because
it naturally lends itself to the processing of packets as they
traverse network hops and are encapsulated/decapsulated at
different network layers.

Users can change any piece of the system by simply chang-
ing the implementation of event handlers. The eventual output
of the simulation is also configurable; users can compute arbi-
trary statistics (e.g., flow completion time, throughput, latency,
drop rate, etc.) or can print raw packet/event traces.

2.2 Today’s Simulators Do Not Scale
Modern simulators are notoriously slow. Even for relatively
small networks, they can require weeks for just a few simu-
lated minutes. Full-size data centers over similar timescales
could take years to simulate. Because of this, it is typical
to limit their execution to severely truncated network sizes
and/or timescales. Both introduce the potential to miss impor-
tant patterns present in larger experiments.

One example of such a pattern is pathological minimum
window issues in TCP. Given enough simultaneous connec-
tions, it is possible that the fair share of each connection is
less than their minimum window size. When this occurs, TCP
will never back off enough to prevent high packet loss. These
circumstances, non-existent in moderately sized networks,
contributed to the adoption of rate-based congestion control
in Google’s data center networks [5, 21].

Multi-threading. One potential solution to the problem of
simulator speed is multi-threading, for instance using Parallel
Discrete Event Simulation (PDES). PDES partitions the net-
work and has each partition, in parallel, simulate events that
are not causally dependent [10]. Many popular simulation
frameworks include support for this technique [31]. However,
the improvement offered by PDES is limited because causal-
ity must be maintained in order to ensure accurate simulation.

As mentioned in Section 1, for highly interconnected net-
works like those found in data centers, synchronization can
actually cause PDES to perform worse than a single-threaded
implementation. To demonstrate this effect, we run an OM-
NeT++ simulation on servers with two Intel Xeon E5-2660
processors (10 cores each). The simulation is of a leaf-spine
topology with 10 GbE links and racks of four severs. We vary
the size of the network by increasing the number of ToRs
and Cluster switches from 4 to 64, while maintaining over-
subscription and average load. For parallel executions, we
leverage OMNeT++’s built-in MPI-based PDES framework.

Figure 1 shows the results, where higher simulation sec-
onds per second indicates better performance. While multi-
threading helps for smaller network sizes, as connections
increase, so does the overhead of synchronization. Thus, for
large networks, single-threaded instances beat the parallel
deployments significantly. Performance of PDES increases
with machine count, so a large cluster could, in principle,
outperform a single thread, but at disproportionate cost.

Other methods of parallelization. An oft-recommended al-
ternative to multi-threading is simply running many instances.
This trivially provides a proportional speedup to aggregate
simulation throughput, but does not improve the time to re-
sults, which may be important for iteration, etc.
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Figure 2: A 3-layer Clos network with
servers connected with a tree of ToR,
Cluster, and Core switches.
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Figure 3: A sketch of our proposed approach. We first run a simulation with
just two clusters and train a model to replace one of them. We can then reuse
the trained cluster model in large-scale simulations to replace the majority
of the network.

More generally, scaling through parallelization is typically
limited to linear speedups while the speed of current simula-
tors is orders of magnitude away from practical.

3 OVERVIEW
In this paper, we argue that the right way to model the behav-
ior of large networks is to leverage machine-learning (ML)
aided approximation. While there has been much recent inter-
est in applying ML to predict how systems will function given
different inputs (e.g., configurations, failure conditions, etc.),
the target of our work is in how we might predict the behavior
of large systems using observations of smaller systems.

Compared to the lower-granularity and customized approxi-
mation approaches mentioned in the previous section, approx-
imation using ML (and specifically, using neural networks)
lends itself to generality and flexible accuracy.

Said differently, the Hindu parable we alluded to in this pa-
per’s title is a lesson in how the subjective reality of different
viewers can be hard to synthesize. In this paper we show that
synthesis is possible as long as we leverage careful planning,
coordination, and deep learning techniques.

The design goals of our framework are as follows:

• Orders of magnitude faster simulation: Our simulator
must be able to run a data center traffic matrix several
orders of magnitude faster than existing approaches.
Parallelization, on its own, is not enough—we seek to
decrease the total work done by the system.

• Adjustable accuracy: We seek to give users the option to
control an accuracy versus speed trade-off. Full scale sim-
ulation is needed in some scenarios, where the fidelity of
each packet is crucial. However, approximating portions
of the network allows users to simulate longer spans of
time for the same cost of computation, while taking an
accuracy hit. Our work aims to develop this trade-off for
data center simulation.

• Modularity: The method we choose must be able to model
different protocols and traffic patterns. These can be at
any layer of the networking stack.

The workflow we propose is one in which a user partitions
the data center network into identical regions containing both
servers and switches. We first briefly simulate a small network
in full packet-level fidelity to generate training and testing sets

for a machine learning model that can take incoming packets
as inputs and generate properly timed outgoing packets.

After training a robust model that accomplishes the above,
we can assemble a full-size simulation in which the vast ma-
jority of the network is replaced with fast and accurate models
as shown in Figure 3. The benefit of this approach is that, dur-
ing at-scale simulation, the internals of each approximated
region can be safely skipped, thereby significantly reducing
the total number of events and therefore the time it takes
to run the simulation. Instead, their complexity is reduced
to matrix multiplications—a highly optimized operation on
modern computer architectures. For example, if we were to
approximate 63 of 64 clusters of a data center, we could po-
tentially reduce the number of events scheduled by orders of
magnitude.

Further, a portion of the network can be left un-approximated
so that we can continue to draw full-fidelity statistics from the
simulation. The symmetric structure of data centers means
that these subregions will exhibit representative behavior.

We leave a thorough design and implementation of such a
simulation framework to future work. Instead, this paper lays
out the key challenges of this approach, discusses our initial
thoughts on the topic, and presents a preliminary prototype
that demonstrates several aspects of the system.

4 MODELING A NETWORK REGION
A key decision is how to choose the size of a region in order
to balance fidelity, accuracy, and training speed. The larger
the target region, the more events that can be removed by
approximation, but the harder it is to get high accuracy in
training quickly. Our preliminary prototype uses clusters as
the unit of approximation. For example, Figure 2 and Figure 3
show how our system would replace the four switches of each
approximated cluster with a single black box approximation.

Given that split, we model the network region’s behavior
as time series prediction problem: given a incoming trace of
packets, can we predict if and when packets will egress the
region? Our preliminary prototype for addressing that ques-
tion is driven by both data center specific domain knowledge
as well as statistical analysis of commonly used data center
packet traces [3]. In particular, our analysis of latency and
drop data from sample TCP web traffic revealed meaningful
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patterns in the data both at the timescale of seconds as well
as microseconds. At the seconds scale, the average latency
of packets perceptibly shifts up and down as queues fill and
drain. At the microsecond scale, small jitter occurs in queues
as different flows join and leave the network, which appears
as small troughs and peaks in latency. Because of this multi-
scale structure, we developed a hierarchical set of models: a
single “macro” model for longer-term regimes, and a “micro”
model for regression over individual packets.

4.1 Macro Model
We identify four macro states in the data:

(1) Minimal congestion, where queues are mostly empty and
packets experience minimal queuing latency.

(2) Increasing congestion, where paths are becoming con-
gested, but latency has not peaked.

(3) High congestion, where a significant number of packets
are being dropped due to full queues.

(4) Decreasing congestion, where congestion is subsiding,
allowing queues to drain.

Currently, our simulation platform identifies macro states
using a simple and fast auto-regressive model. Based on previ-
ously observed latency and drop rates, if latency is relatively
low, it classifies the network as (1). If drops are relatively high,
it classifies the network as (4). (2) and (3) are distinguished
based on prior state by observing whether latency and drops
are rising or falling.

4.2 Deep-learning Micro Models
Our micro models use LSTMs [14], a type of recurrent neu-
ral network (RNN). Like other neural networks, RNNs are
composed of a series of neural nodes that take input features,
and perform a series of matrix multiplications on them based
on each node’s activation function. In RNNs, hidden layers
carry forward state information, which allows the network
to “remember” previous inputs when processing future in-
puts. This gives them the ability to recognize patterns. RNNs
are able to approximate any dynamic system with arbitrary
complexity [27].

LSTMs are a special kind of RNN that include “memory
gates.” These gates are sigmoid activation functions coupled
with a multiplication step that serve to choose which inputs
are remembered by the LSTM and which are forgotten [23].
During training, samples are run through the LSTM, and
gradient back propagation based on a loss function is used to
determine the parameters of the network.

Our LSTM models are trained at the packet level—the
model takes packets as inputs and predicts whether they will
be dropped or after what delay they will be delivered. Other
network-level effects such as route and packet-level modifica-
tions can be handled by either computing the effect directly
(if it is deterministic like TTLs, MAC addresses, or ECMP
path choice), or including it as part of the ML training and
prediction (for instance, when setting an ECN bit).

We train one model for packets entering the approximated
cluster and one for packets leaving because the distribution
of flows in either direction can differ significantly at a given
point of time. The features used for training are crucial to
the success of both models. For each packet, these include:
the origin and destination servers; the ToR, Cluster, and Core
switches that the packet would pass through in the cluster re-
placed by approximation; the time since the last packet arrived
at the model; a moving average of these times; and finally,
the current macro state of the cluster. The model then outputs
both a binary decision whether to drop the packet and the
predicted latency that the packet would experience if it is not
dropped. For both ingress and egress, all of the input features
can be calculated directly from the packet header information,
simulation time, and knowledge of routing strategy.

The multi-dimensional hidden state output from the LSTM
is given to one fully connected layer to predict the latency and
another fully connected layer to predict packet drop. This is
superior to training two separate models as the neural network
representation can learn the joint distribution of drops and
latency. As a result the loss function for training has two
components: binary cross entropy loss for the drop decision
per packet and mean squared error for the latency values. A
hyper-parameter α balances the relative contribution of error
prediction, L = Ldrop + αLlatency . However, if there is a
packet drop then no latency error can be back-propagated.
In practice, we set α to a value 0 < α ≤ 1 because the
contribution of drops in determining future behavior is more
significant than latency.

The micro models are trained on >50,000 batches of size
64. We used the stochastic gradient descent optimizer with
a learning rate of 0.0001 and momentum of 0.9. The model
prediction is relatively fast since prediction only involves a
few matrix multiplications and non-linear transformations.

We note that predicted latency can sometimes result in
impossible schedules if two packets are scheduled for the
same time. In this case, the one processed first is given priority,
with conflicting packet sent at the next possible time. We also
note that in some cases, the behavior of packets can logically
depend on messages that have not yet arrived. Delays and
lookahead mechanisms are thus important open challenges.

5 SIMULATING AN ENTIRE NETWORK
We can use approximations for each cluster fabric as build-
ing blocks for a faster network simulator as shown in Fig-
ure 3. Our prototype extends the popular OMNeT++ simulator
through a custom library that implements both a macro state
classifier and micro latency/drop predictors. In our prototype,
a single cluster and all core switches are implemented in full
fidelity. Approximated clusters run full TCP stacks because it
is more efficient to implement them than try to learn the TCP
state machine and protocol specification.

The aspects of the simulation this is able to elide are (1)
the ToR and Cluster switches of approximated clusters includ-
ing their queuing, routing, and packet processing procedures,

144



 0

 0.2

 0.4

 0.6

 0.8

 1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

C
D

F

Latency

Groundtruth
Approx

Figure 4: CDF of real and approximate packet RTTs.

and (2) the traffic within and between approximated clusters,
which is not needed by the fully approximated cluster for
analysis. These aspects significantly reduce the total amount
of work done by the simulation, and thus have the potential
to improve performance substantially.

6 EVALUATION
We evaluate our system for two primary metrics: speed com-
pared to full simulation and accuracy in end-to-end latency.
For these preliminary results, we tested a Clos topology with
TCP New Reno and ECMP implemented on OMNeT++/INET.
Machine learning models were trained using PyTorch 0.4.0
and accessed within OMNeT’s C++ environment via ATEN.
All experiments were run on servers with two Intel Xeon
Silver 4114 CPUs, 192 GB of memory, and an NVIDIA Tesla
P100 GPU. Traffic patterns are drawn from a well-known
trace of datacenter web traffic [3].

6.1 Accuracy for ECMP TCP
To understand the accuracy of our system, we compare the
CDFs of observed RTTs by hosts in both the full and approx-
imate simulations. The results are shown in Figure 4. We
chose to do a CDF comparison rather than report a per packet
metric because TCP interaction with the model makes these
measurements unreliable. The interaction of TCP congestion
control and the imperfect model predictions during run time
will cause latencies to diverge and some packets to be dropped
that were not dropped in the full simulation and vice versa.
Thus, a packet-to-packet comparison is not as meaningful.
Instead, we use a CDF to ask whether the overall distributions
of the two simulations are similar.

This analysis gives a sense of how well the model is able
to follow the changes in congestion of a real cluster due
to packets entering the system. The approximated version
has a steeper slope, but still turns upward at a similar value
to the ground truth. This means that the approximation is
consistently underestimating congestion, however the values
are still within the realm of possibility. This shows that the
approximation is predicting in the right ballpark, and methods
of improving the accuracy are discussed in the future work.
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6.2 Speed of Approximation
To test the speedup of our approach, we simulated varying
numbers of clusters both fully, and using our approxima-
tion clusters. In each test, the full simulation runs clusters
containing four switches and eight servers, while the approx-
imate simulation replaces all but one of these clusters with
approximation models. We note that our accuracy and thus
performance results, particularly for larger cluster counts, are
preliminary. Thus, these numbers represent a upper bound
on the performance benefits of our current design. Figure 5
shows the results of these tests.

There are significant speedups that increase in magnitude
as the number of clusters increases. The approximate version
is faster than the full version for three reasons. The first is
that the events scheduled in the approximated network fabrics
are completely removed and replaced with LSTM classifi-
cations, a fast operation. The second is that traffic between
servers in approximated clusters is entirely omitted from the
flow schedule. This traffic is not needed because it does not
directly affect the measurements of the fully simulated cluster,
so it can be safely omitted so long as accuracy is retained.
Both of these savings compound with approximating larger
networks, meaning these techniques scales well. Third, the
approximate version was run in parallel. Because the inter-
dependencies between cluster fabric switches are removed,
parallel execution provides better speedups here than it does
for full simulation. These results indicate that our method has
the potential to scale to hundreds of clusters and thousands
of machines while still keeping the runtime to a useful result
low.

7 DISCUSSION AND FUTURE WORK
In the previous section, we demonstrated an initial prototype
of our system; however, this paper represents a first cut at a
large and challenging problem—how to predict the behavior
of massive systems without massive infrastructure. There are
a number of future directions we wish to explore.

Improving accuracy. There is a great deal of room for im-
provement in accuracy. Our prototype currently uses a two-
layer LSTM with 128 hidden nodes. Accuracy can be im-
proved by stacking more layers, using more nodes per layer,
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and testing new LSTM variants. Each of these come with
tradeoffs that must be carefully balanced—adding more com-
plexity may increase the cost of training and prediction, but
allows us to learn more complex behaviors.

Other potential directions include more advanced loss esti-
mation that takes the nature of the traffic into account, better
feature engineering, and hyperparameter tuning.

Further scalability improvements. An open question is how
much more complexity we can remove while retaining accu-
racy. In the limit, the rest of the network could be modeled as
a single black box, but training that black box to approximate
such a large collection of machines is not trivial.

We also plan to explore other limitations to scalability.
Though our evaluation demonstrates promising performance
trends, one reason we could not evaluate full-sized data cen-
ters is that our servers simply did not have enough memory
to hold state for millions of TCP connections. Further re-
placement of these connections with ML models can help
to address this issue, but additional systems-level challenges
may become important.

Generality. While our LSTM-based approach is agnostic to
many details of the target architecture, it is an open question
as to the extent of this generality. In particular, more exotic
protocols with stochastic behavior, long-term dependencies,
and sparse data may be difficult for traditional LSTMs to
handle. We note that the ML community is actively pursuing
solutions to these challenges.

An insight from our data is that there are multiple long
term regimes in latency and packet drop. Multi-scale and hi-
erarchical recurrent neural network models [6] are interesting
future directions as these models can simultaneously capture
macro and micro effects. Recent work in focused hierarchical
RNNs [15] and State Frequency Memory RNNs [33] will also
be considered for the micro model to incorporate longer term
information. Another area of further research is to understand
if subsets of the model can be trained independently or with
interactions only at hidden layers of the RNN.

Generalizing even further, we plan to explore applicabil-
ity to other network protocols and other network structures
like those found in the Internet or experimental topologies.
Though our approach targets data center networks specifically,
neural network models are able to adapt to wide variety of
behaviors, making them potentially well-suited for a general
purpose simulator.

Applications to systems. Finally, we note that the proposed
ideas have broader applicability than just simulation. As men-
tioned in Section 3, the target of our work is in how we might
predict the behavior of large systems using observations of
smaller systems. This ability may be useful in other systems
as well. At the very least, it could be used as an enhancement
to recent work on predicting the behavior of systems to find
optimal configurations, etc. For instance, it may enable sys-
tems to sample the behavior of pieces of the network with the
aim of adapting to network-wide effects.

8 RELATED WORK
As critical tools for both researchers and operators, network
simulators have been around for decades [17]. Popular choices
include ns-3 [13, 22] and OMNeT++ [18] (upon which our
system is built). To our knowledge, our system is the first to
leverage an approximate learning model.

When simulating large networks, the predominant approach
is to sacrifice granularity by eschewing packet-level analysis
entirely. Flow-level simulation is one example of this ap-
proach [20, 25]. As mentioned in Section 2, these simulators
can provide insight into the general behavior of the system,
but miss out on many import network effects, particularly in
the presence of bursty traffic. Other solutions rely more on
analysis rather than simulation. BigHouse [19], for instance,
models data center behavior using traffic drawn from empiri-
cally generated distributions, and then again modeling data
center metrics based off of the generated traffic. Our system,
in contrast, begins with a faithful reproduction of the target
system, providing a more realistic simulation.

A related topic is emulation. Emulation seeks approxi-
mately real-time results, which makes iteration fast and intro-
duces the possibility of attaching real systems to the frame-
work [1, 16, 24, 26, 29, 30]. These are nice properties, but in
terms of scale, emulators are generally not built to extend be-
yond the number of available servers. In contrast, our system
runs offline and can potentially scale to arbitrary sizes.

Finally, recent work has explored the use of machine learn-
ing and statistical approximation to tailor system configura-
tions. In particular, several systems have used reinforcement
learning to train congestion control based on assumptions
about the underlying network [9, 32]. These works focus on
optimizing systems rather than using statistical methods to
approximate computation, as our work does.

9 CONCLUSION
We have presented a system to speed up network simula-
tion by replacing redundant network fabrics with machine
learning approximations. Our system uses a machine learning
model which considers the observed history of packet head-
ers passing through the network to incur drops and latency
on new packets that pass through it. Preliminary results us-
ing our model show speed ups for larger clusters while still
maintaining decent accuracy in terms of latency.
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