
CS 88: Week 2: Class 4: Buffer Overflow Attacks

Q1. The threat model is victim code handling input that comes from across a
security boundary. What are some examples of this that you can provide? (Here are
some examples to get you started.)

● A computer login screen that accepts a username and password typed by the
attacker.

● An email server or email clients accepting, storing, and rendering email
messages from an attacker.

Q2. A Buffer Overflow can exploit…

A. pointer assignment & memory allocation, de-allocation
B. function pointers
C. calls to library routines
D. general purpose registers
E. format strings

Q3. Consider the following code:
char buf[8];
int authenticated = 0;
void vulnerable() {

gets(buf);
}

Note that both char buf[8] and authenticated are defined outside of the function,
so they are both located in the static part of memory. In C, static memory is filled
in the order that variables are defined, so `authenticated` is at a higher address in
memory than buf (since static memory grows downward and buf was defined
first, buf is at a lower memory address).



Imagine that elsewhere in the code, there is a login routine that sets the
authenticated flag only if the user proves knowledge of the password. What
damage could you do?

Let’s consider a modification of the above code:

char buf[8];
int (*fnptr)();
void vulnerable() {

gets(buf);
}
`fnptr` is a function pointer. In memory, this is a 4-byte value that stores the
address of a function. In other words, calling `fnptr` will cause the program to
dereference the pointer and start executing instructions at that address.

Like `authenticated` in the previous example, `fnptr` is stored directly above `buf`
in memory. Suppose the function pointer `fnptr` is called elsewhere in the
program (not shown). What possible damage can you do now?



Q4. Draw out a stack diagram and build your
very own shellcode attack sandwich.
Information you are given:

● buffer to overflow:
○ char buffer[100]
○ &buffer[0] = 0xffffd88c
○ $eip = 0xffffd8bc
○ shellcode = 20 bytes

Task A: Figure out the distance from the
start of the buffer to the saved eip
value.
Task B: Figure out where you want to
point your saved eip to, in the NOP sled
you’ve created.



Q5. We’ve seen that the cause of the vulnerability is often no range checking (i.e.,
string functions in C do not check input size). Assess whether the following range
checking will help:

Q6. Now consider the following code. Do you think it is free from integer overflow
vulnerabilities?



Q7.


