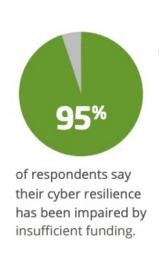
# CS 88: Security and Privacy

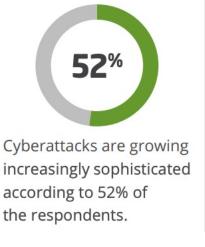
01: Introduction

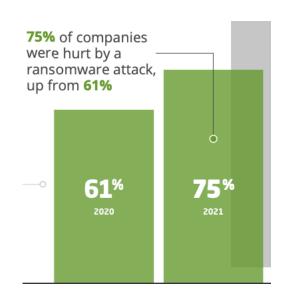
01-23-2024



### Welcome to CS88!


### Today:


- What is this course about?
- Course Structure/logistics
- An Introduction to Security


### State of Security & Privacy

- Nation-state threats and DDoS attacks skyrocket throughout the Russo-Ukrainian War.
- Costa Rican government declared a national emergency in response to ransomware attacks targeting the healthcare and social security systems.
- The Lapsus\$ Group: posting source code from Samsung, Microsoft, Nvidia.









## Example threat





#### Someone has your password

Hi John

Someone just used your password to try to sign in to your Google Account john.podesta@gmail.com.

#### Details:

Saturday, 19 March, 8:34:30 UTC IP Address: 134.249.139.239

Location: Ukraine

Google stopped this sign-in attempt. You should change your password immediately.

**CHANGE PASSWORD** 

Best,

The Gmail Team

Adopting a ``Security Mindset''

What does security mean to you?

Adopting a ``Security Mindset"

that new product X sounds awesome! I can't wait to use it!

VS

X sounds cool but I wonder what would happen if someone did Y with it...

#### Why it's important:

- design better systems/solutions
- security in the broader context: law, policy, ethics, etc.
- technology changes: thinking like a security person more important than learning the specifics of today

- 1. Adopt a "Security Mindset"
- 2. Learn how computers/information systems can be attacked.
  - Desirable properties of system X
  - Adversary model (capability of the adversary)
  - Trust assumptions (what I am depending upon for the desirable property to hold against certain adversary)

- 1. Adopt a ``Security Mindset"
- 2. Learn how computers/information systems can be attacked.
- 3. Learn to understand and apply security principles when designing/building/analyzing systems
  - principle of least privilege, separation of duty
  - authentication, access control, various crypto tools, sandboxing, isolation
  - No silver bullet; man-made complex systems will have errors; errors may be exploited

## Security is Interesting!

The most interesting/challenging threats to security are posed by human/AI adversaries

Security is about cost/benefit tradeoff: often this tradeoff analysis is not explicit

Security is not all technological: Humans are often the weakest link

### Security is Challenging

- Defense is almost always harder than attack.
- Data/Network/Computer Security is much harder than Physical security
  - adversaries can come from anywhere
  - computers enable large-scale automation
  - adversaries can be difficult to identify
  - adversaries can be difficult to punish
  - potential payoff can be much higher

### Tools for Security

- Cryptography
- Authentication and Access control
- Hardware/software architecture for separation
- Processes and tools for developing more secure software
- Monitoring and analysis
- Recovery and response

## Security is interdisciplinary

- Draws on <u>all</u> areas of CS
  - Theory (especially cryptography)
  - Networking
  - Operating systems
  - Databases
  - Al/learning theory
  - Computer architecture/hardware
  - Programming languages/compilers
  - HCI, psychology

### Philosophy of this course

- We are not going to be able to cover everything
  - We are not going to be able to even mention everything
- Main goals
  - The security "mindset"
  - Understand and apply security principles to prevent attacks and/or limit their consequences.
  - Become an educated security consumer

You *should* have a better appreciation of security issues after this class

You will *not* be a security expert after this class (after this class, you should realize why it would be dangerous to think you are)



### Vasanta Chaganti Please call me Vasanta or Prof. Chaganti

- PhD: Australian National University & CSIRO Australia
- Post-Doc: UMass, Amherst

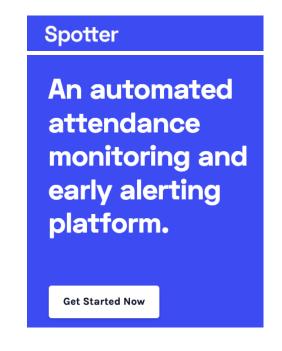
Research: What does your network data reveal about you?

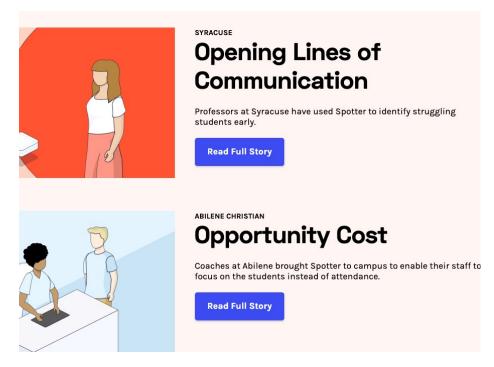
Office Hours • Mondays: 2.00 - 4.00PM

SCI 253

Tuesdays: 2.00 - 4.00PM

### What does your network data reveal about you?

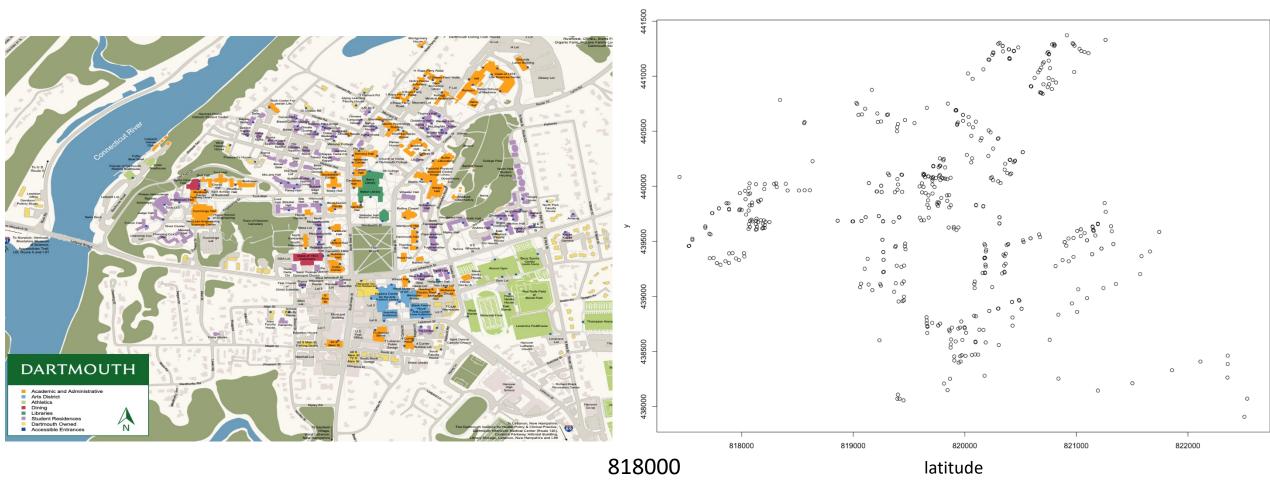

## George Washington University apologizes for data project monitoring student and staff locations on campus


Joe Heim · February 12, 2022 at 4:04 p.m. EST



George Washington University apologized for not informing students, faculty and staff about a data analytics project that monitored their location on campus. (Toni L. Sandys/The Washington Post)

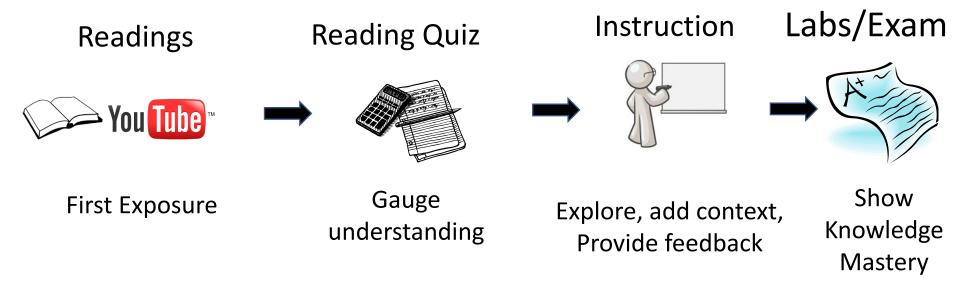
-Washington Post, 2022






https://spotteredu.com/

Wireless network data exposes sensitive user information


### What does your network data reveal about you?



Anonymized network data is susceptible to semantic attacks

Lat-Long coordinates of Access Points Published in CRAWDAD Dartmouth Wireless Traces

#### Classes: Interactive Classes with Peer Instruction



- You do the "easy" part before class
- Class is reserved for interactive, customized experiences
- To learn, YOU must actively work with a problem and construct your own understanding of it

#### Peer Instruction: In-class discussions

- Based on readings for that day
- Individually think about the questions (1 -2 minutes)
- <u>Discuss</u>: Analyze problems with your group
  - (5 10 minutes)
  - Practice analyzing, talking about challenging concepts
  - Reach consensus
  - If you have questions, raise your hand and I'll come over
- <u>Class-wide discussions</u> Led by YOU (students) tell us what you talked about in discussion that everyone should know!

### Why Peer Instruction?

- You get a chance to think.
- I get feedback as to what you understand.
- It's more engaging!
- Research shows it promotes more learning than traditional lecture.

#### Clickers!



- Lets you vote on questions in real time.
- Like pub trivia, except the subject is always security ©

#### **Clicker Registration**

https://forms.gle/FoVgzx4 WVG8Gugqx6

If you don't register your clicker, I can't give you credit for quizzes / participation!

Participation scores count from week 2 (via paper hand-ins or clickers)

## Locating your Clicker ID



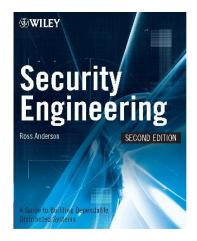
Hexadecimal number: numbers 0-9 and letters A – F

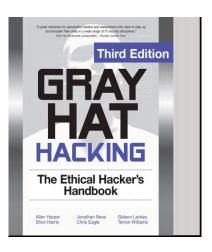
ID is also visible when you turn your clicker on.

iClicker with Hexadecimal ID

### Schedule

- Tentative Dates:
  - Midterm 1: Feb 23rd
  - Midterm 2: Apr 4th
- Midterm Polls:
  - Select <u>all</u> times that work for you: <a href="https://forms.gle/dohk1o6Cjj4srhpB8">https://forms.gle/dohk1o6Cjj4srhpB8</a>
  - Respond by the end of week-1!
  - Let me know if these dates are problematic this week!
- Final Project: Presentations during exam week
- Labs @ SCI 254
  - Labs are held on Wednesday: 1:15-2:45PM | 3:00-4:30PM
  - Prev. Lab due on Tuesdays via Github: <a href="https://github.swarthmore.edu">https://github.swarthmore.edu</a>


#### Resources: EdStem


- Edstem Q&A Forum: <a href="https://edstem.org/us/join/5f2uet">https://edstem.org/us/join/5f2uet</a>
- All announcements will be on EdStem
- Use Edstem! (counts towards your grade)
  - asking questions (not asked previously)
  - answering questions (you've worked through)
  - when in doubt (e.g., posting code)— leave a private message
  - Response within a day

• Email doesn't scale: course related questions/comments edstem/office hours

### Resource: Readings

- No required textbook
- Course readings posted on website
- Optional textbooks:





#### Course Grade Distribution

- 5% Readings Quizzes (based on assigned readings/videos)
- 5% Class and Lab Attendance
- 5% Edstem participation
- 15% Project
- 35% Midterm Exam-1 (15%) and Midterm Exam-2 (20%)
- 35% Labs (3%, 8%, 8%, 8%, 8%)

#### Course Grade Distribution

- 5% Readings Quizzes (based on assigned readings/videos)
- 5% Class and Lab Attendance
- 5% Edstem participation
- 15% Project
- 35% Midterm Exam-1 (15%) and Midterm Exam-2 (20%)
- 35% Labs (3%, 8%, 8%, 8%, 8%)

I will drop your three lowest quizzes/no-shows.

### Succeeding in Upper-level CS Classes

- Reading comprehension!
- Pre-Reqs: 31 & 35 and ACTUALLY applying material you learnt from those classes
  - remember valgrind and gdb? they'll be your best friends ... again!
- Working through code, problem sets, and reading material like you would in the "real-world"
  - making sure you <u>read and understand</u> required readings/videos
  - try/brainstorm different approaches...
  - growth mindset

- It's been a weird couple of years ...and it's okay to not be on top of everything
- Please reach out to:
  - Me (Vasanta)
  - Your Academic Advisors
  - Student Deans
  - Counseling & Psychological Services



by KC Green

### Policies: Late Submissions



Genie (as William F. Buckley Jr)"
There are a few,..provisos, a, a couple of quid pro quos." - in Aladdin

#### Lab Lateness

- 2 days of extra time for the semester (granularity of days)
- Email AFTER you are done!
- No Email: Grade whatever is present at the deadline.

### Policies: Academic Dishonesty

- Collaboration
  - You may discuss approaches, not solutions
  - You must submit your own work
  - Exams may include questions on programming
- Cheating
  - We take this very seriously. It can have a negative impact on your course grade, your GPA and your record at Swarthmore and beyond.
  - Don't do it!

### Policies: Academic Dishonesty

### (Few) Examples of plagiarism

- Screen sharing with folks not in your lab partnership
- "Let me read my code out to you, or share the exact API for a particular function"
- Share in words the content in your code: "I first used strncpy to copy the string up to n bytes, and then appended a null character at the end"
- I'm applying a "security mindset" to "think like an attacker" on course assessment infrastructure

### Policies: Academic Dishonesty

### Examples of how not to plagiarize:

- Behave as though you are a CS ninja
- "What approaches did you try so far?", "Looks like you have gotten more of the string than you need to, use man pages to look at other string functions"
- Don't know how to help your friend? Ask them to post to Edstem to the class or send a post privately to me.

#### Policies: Ethics

- We will be discussing and implementing real-world attacks.
- <u>Using some of these these techniques in the real world may be unethical, a violation of university policies, or a violation of federal law.</u>
- This includes the course lab and assessment infrastructure (e.g., unethical use of Virtual Machines, cheating on exams, provided lab/class code, methods, and principles on real-world systems)
- Be an ethical hacker
  - Ethics requires you to refrain from doing harm
  - Always respect human, privacy, property rights
  - There are many legitimate hacking capture-the-flags
- Sign the ethics form! https://forms.gle/JZSujVZayiAUpVEJ6

# 18 U.S. CODE § 1030 - FRAUD AND RELATED ACTIVITY IN CONNECTION WITH COMPUTERS

Whoever intentionally accesses a computer without authorization or exceeds authorized access, and thereby obtains information from any protected computer...

The punishment for an offense...

- a fine under this title or imprisonment for not more than one year, or both...,
- a fine under this title or imprisonment for not more than 5 years, or both... if
  - i. the offense was committed for purposes of commercial advantage or private financial gain;
  - ii. the offense was committed in furtherance of any criminal or tortious act...; or iii.the value of the information obtained exceeds \$5,000

#### Administrative Questions?

All of this info is on the class website

Feel free to ask Q&A on the Edstem discussion board

- This is only the second time we are running this course... so please anticipate
  - changes to the topics we cover
  - scope of lab assignments
  - possible issues with code/VM etc.
- Would be great to get (constructive) feedback!

What is security, anyway?

#### What makes it different from robustness?



#### What makes it different from robustness?





Computer security studies how systems behave in the presence of *an adversary*.

Actively tries to cause the system to misbehave.

#### Thinking like an attacker

- Look for the weakest links
- Identify assumptions that security depends on. Are they false?
- Think outside the box
  - Not constrained by the system designer's world view!

Start practicing: When you interact with a system, think about what it means to be secure, and how it might be exploited

## Example Clicker Question

Individual vote (think 1-2 minutes)

- Group discussion / group vote (5 minutes)
  - Room should be LOUD

Class discussion

#### Discussion Question: Security Mindset

How many of the following activities do you think you can successfully implement? i.e., what vulnerabilities in the system can you find/exploit?

(warning: actively targeting Phineas the Phoenix is against the Swarthmore Honor Code, can be grounds for explusion, and is potentially a federal crime)

- 1. get access to Phineas the Phoenix's costume
- 2. get access to Phineas the Phoenix's webpage/facebook page
- 3. find the exact location of Phineas the Phoenix and all past visit locations

- A. successfully accomplish 1 of these attacks
- B. successfully accomplish 2 of these attacks
- C. successfully accomplish 3 or more attacks

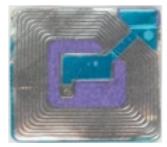


https://www.swarthmore.edu/phoenix/naming-phoenix

# Security: Not Just for Computers



smartphones




wearables





voting machines



**RFID** 





**EEG** headsets



medical devices



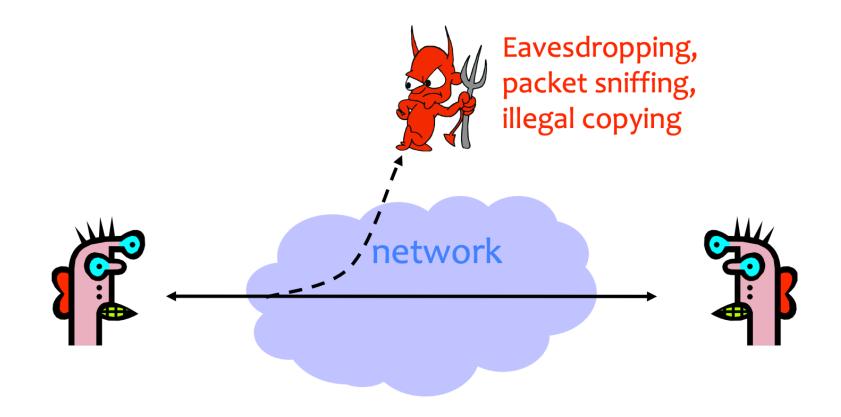
mobile sensing platforms



cars

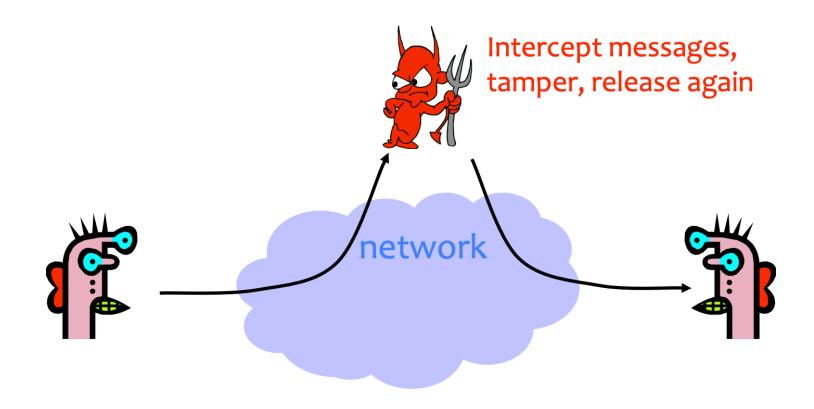


- Normally, we are concerned with the achieving correctness
  - e.g., does this software achieve the desired behavior
- Security is a form of correctness
  - does this software prevent "undesired" behavior?
- Security involves an adversary who is active and malicious
  - Attackers seek to circumvent protective measures


#### Correctness vs. Security

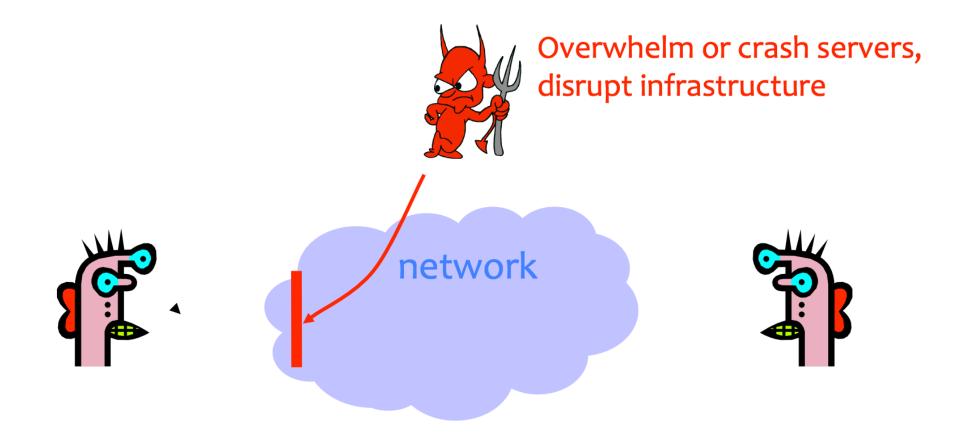
- System correctness: system satisfies specification
  - for reasonable input: get reasonable output
- System security: system properties preserved in the face of attack
  - for unreasonable input: output is not completely disastrous
- Main difference: active interference from an adversary

- General security goals: "CIA"
  - 1. Confidentiality
  - 2. Integrity
  - 3. Availability


# Confidentiality (Privacy)

Confidentiality is concealment of information




## Integrity

Integrity is prevention of unauthorized changes

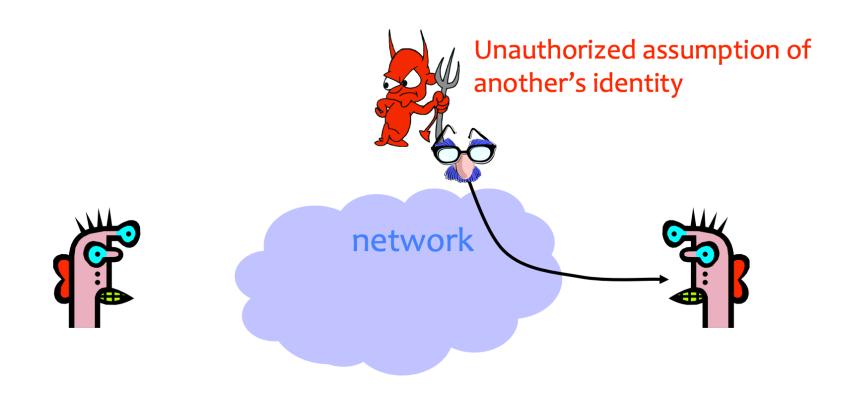


## Availability

Availability is the ability to use information or resources

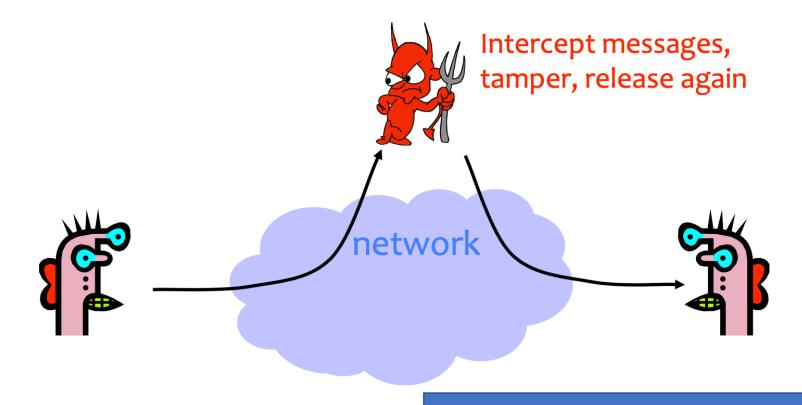


General security goals: "CIA": Confidentiality, Integrity, Availability


- How about if you receive data from an unknown person? what principle does it fall under?
- How about if a college student subverts DRM protections and creates a unprotected MP3 of a Beatles album?
- Internet connected machine with the latest updates and software installed. Privacy violations?
- ..How about accountability, non-repudiation, usability?

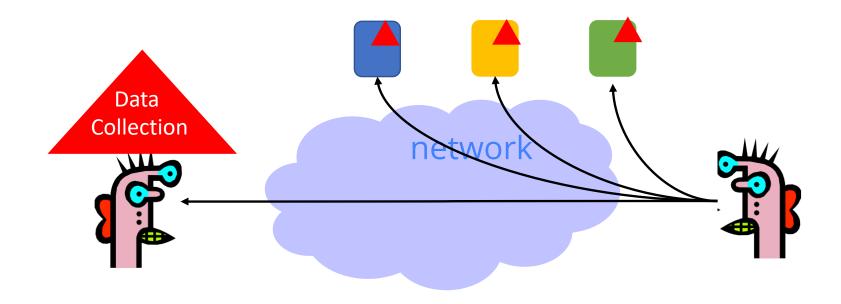
General security goals: "CIA": Confidentiality, Integrity, Availability

- How about if you receive data from an unknown person? what principle does it fall under?
- How about if a college student subverts DRM protections and creates a unprotected MP3 of a Beatles album?
  - POV of RIAA: bad thing
  - POV of end users: technology prevents legitimate "fair use"
- Internet connected machine with the latest updates and software installed. Privacy violations?
- ..How about accountability, non-repudiation, usability?


#### Authenticity

Authenticity is knowing who you're talking to




# Accountability and Non-Repudiation

Provide evidence that a specific action occurred



Audit Log: Timestamp: Source IP, Dest IP, Data transferred

# Privacy of collected information



#### General security goals: "CIA"

- Confidentiality
- Integrity
- Availability

- ...
- Authenticity
- Accountability and non-repudiation
- Access Control
- Privacy of collected information

#### Threat Modeling:

- Assets: What are we trying to protect? How valuable are those assets?
- Adversaries: Who might try to attack, and why?
- Vulnerabilities: How might the system be weak?
- Threats: What actions might an adversary take to exploit vulnerabilities?
- Risk: How important are assets? How likely is an exploit?
- Possible Defenses

#### Threat Modeling

- Perfect security? No such thing!
- BUT...
  - attackers have limited resources
  - make attackers pay unacceptable costs to succeed!
- Defining security per context:
  - identify assets, adversaries, motivations
  - threats, vulnerabilities, risk,
  - possible defenses...

#### Next class...

- The security mindset
- Software Security