CS 88: Security and Privacy

19: DNS and UDP

04-11-2024

slides adapted from Dave Levine, Jim Kurose

Reading Quiz

Send information from one computer to another

We only need...

- Manage complexity and scale up
- Naming and addressing
- Moving data to the destination
- Reliability and fault tolerance
- Resource allocation, Security, Privacy..

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Layering and encapsulation

Abstraction!

- Hides the complex details of a process
- Use abstract representation of relevant properties make reasoning simpler
- Ex: Alice and Bob's knowledge of postal system:
 - Letters with addresses go in, come out other side

TCP/IP Protocol Stack

TCP/IP Protocol Stack

The "End-to-End" Argument

Don't provide a function at lower layer if you have to do it at higher layer anyway unless there is a very good performance reason to do so.

Examples: error control, quality of service

Reference: Saltzer, Reed, Clark, "End-To-End Arguments in System Design," ACM Transactions on Computer Systems, Vol. 2 (4), pp. 277-288, 1984.

Threat modeling for network attacks

Basic security goals:

- **Confidentiality:** No one should be able to read our data/communications unless we want them to.
- Integrity: No one can manipulate our data/communications unless we want them to.
- Availability: We can access our data/communication capabilities when we want to.

Network Attacks: Classes of Attackers

- MiTM: Can see packets, and can modify and drop packets
- On-path: Can see packets, but can't modify or drop packets
- Off-path: Can't see, modify, or drop packets

Which type of attacker is more powerful?

- A. on-path
- B. off-path
- C. neither is strictly stronger than the other

DNS: a distributed, hierarchical database

Goals of DNS

A wide-area distributed database

Possibly biggest such database in the world!

Goals

- Scalability; decentralized maintenance
- Robustness
- Global scope
- Names mean the same thing everywhere
- Distributed updates/queries
- Good performance

DNS: Application Layer Protocol

- distributed database
 - implemented in hierarchy of many name servers.
- application-layer protocol:
 - hosts communicate to name servers
 - resolve names \rightarrow addresses
- Core Internet function, implemented as application-layer protocol

DNS: Domain Name System

People: many identifiers:

• name, swat ID, SSN, passport #

Internet hosts (endpoints), routers (devices inside a n/w):

- "name", e.g., www.google.com used by humans
- IP address (32 bit) used for addressing packets

How do we map between IP address and name, and vice versa ?

DNS: Root Name Servers

- Root name server:
 - Knows how to find top-level domains (.com, .edu, .gov, etc.)
 - How often does the location of a TLD change?
 - approx. 400 total root servers
 - Significant amount of traffic is not legitimate

DNS: a distributed, hierarchical database

DNS: a distributed, hierarchical database

Authoritative Servers

Authoritative DNS servers:

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider, easily changing entries
- Often, but not always, acts as organization's local name server (for responding to look-ups)

Local DNS Name Server

- Each ISP (residential ISP, company, university) has (at least) one
 - also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

Uses of DNS

Hostname to IP address translation

• Reverse lookup: IP address to hostname translation

Host name aliasing: other DNS names for a host

 Alias hostnames point to canonical hostname

Email: look up domain's mail server by domain name

Different DNS Mappings

root DNS server

TLD DNS server

dns.cs.umass.edu

gaia.cs.umass.edu

DNS Packet

DNS Packet

DNS requests sent over UDP

Four sections: questions, answers, authority, additional records

Query ID: 16 bit random value Links response to query

Request

Response

Authoritative Response

Common Security Assumptions

- Attackers can interact with our systems without particular notice.
- *Probing* (poking at systems) may go unnoticed ...
 - even if highly repetitive, leading to crashes, and easy to detect
 - Attackers can obtain access to a copy of a given system to measure and/or determine how it works
- It's easy for attackers to know general information about their targets:
 - OS types, software versions, usernames, server ports, IP addresses, usual patterns of activity, administrative procedures

Common Security Assumptions

- Attackers can make use of automation they can often find clever ways to automate
- Attackers can pull off complicated coordination across a bunch of different elements/systems
- Attackers can bring large resources to bear if needed computation, network capacity
 - But they are *not* super-powerful (e.g., control entire Internet Service Providers)

DNS security

DNS Vulnerabilities:

- No authentication
- Connectionless transport layer protocol (UDP)

DNS Attacks:

- Amplification Attack
- Cache Poisoning
- Man-in-the-middle
- DNS Redirection
- DDoS
- DNS Injection

gaia.cs.umass.edu

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, bypassing root
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS cache poisoning
 - Send bogus replies to DNS server that caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

DNSSEC Hierarchy of Trust

Solution: DNSSEC

- Cryptographically sign critical resource records
 - Resolver can verify the cryptographic signature
- Two new resource types
 - Type = DNSKEY
 - Name = Zone domain name
 - Value = Public key for the zone
 - Type = RRSIG
 - Name = (type, name) tuple, i.e. the query itself
 - Value = Cryptographic signature of the query results

How many answers Time to live in seconds How many additional records?

\$ dig @a.root-servers.net www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57494 ;; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 2 ;; QUESTION SECTION: ;www.freebsd.org. Α IΝ ;; AUTHORITY SECTION: b0.org.afilias-nst.org. 172800 IN NS org. d0.org.afilias-nst.org. 172800 IN NS org. ;; ADDITIONAL SECTION: b0.org.afilias-nst.org. 172800 IN 199.19.54.1 Α d0.org.afilias-nst.org. Α 199.19.57.1 172800 IN

						How many answers Time to live in seconds How many additional records?
<pre>\$ dig @a.root-servers.net ;; Got answer: ;; ->>HEADER<<- opcode: Q ;; QUERY: 1, ANSWER: 0, A</pre>	www.fr UERY, s UTHORIT	eebsd. tatus: Y: 2,	org +n NOERR ADDITI	orecurse OR, id: ONAL: 2	57494	16-bit transaction identifier that enables the DNS client to match up the reply with it's original
<pre>;; QUESTION SECTION: ;www.freebsd.org. ;; AUTHORITY SECTION: org. 17280</pre>	IN IN	A NS	b0.or	g.afilia	as-nst.	request. the question we asked the server type of response A = IP address, and NS = name org.
org. 17280	9 IN	NS	d0.or	g.afilia	as-nst.	org.
<pre>;; ADDITIONAL SECTION: b0.org.afilias-nst.org. d0.org.afilias-nst.org.</pre>	172800 172800	IN IN	A A	199.19 199.19	.54.1 .57.1	
					Glue r	ecords

How many answers? How many additional records?

\$ dig @199.19.54.1 www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39912 ;; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 0 ;; QUESTION SECTION: ;www.freebsd.org. Α IN ;; AUTHORITY SECTION: freebsd.org. 86400 IN NS ns1.isc-sns.net. freebsd.org. 86400 ns2.isc-sns.com. IN NS freebsd.org. NS 86400 ΙN ns3.isc-sns.info.

How many answers? what does it mean if the answer s How many additional records?

\$ dig @199.19.54.1 www.freebsd.org +norecurse ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39912 ;; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 0 ;; QUESTION SECTION: ;www.freebsd.org. Α ΙN ;; AUTHORITY SECTION: freebsd.org. 86400 IN NS ns1.isc-sns.net. freebsd.org. 86400 ns2.isc-sns.com. IN NS freebsd.org. NS 86400 IN ns3.isc-sns.info.

<pre>\$ dig @ns1.isc-sns ;; Got answer: ;; ->>HEADER<<- ope ;; QUERY: 1, ANSWE</pre>	.net ww code: Q R: 1, A	W.fre UERY, UTHOR	ebsd.or status ITY: 3,	g +norecurse : NOERROR, id: 1 ADDITIONAL: 3	L7037
;; QUESTION SECTION;www.freebsd.org.	N:	IN	А		<i>How many answers? what does the answer tell us How many authoritative records?</i>
<pre>;; ANSWER SECTION: www.freebsd.org.</pre>	3600	IN	А	69.147.83.33	what does the authority tell us? How many additional records?
;; AUTHORITY SECTION	ON:				
freebsd.org.	3600	IN	NS	ns2.isc-sns.co	om.
freebsd.org.	3600	IN	NS	ns1.isc-sns.ne	et.
freebsd.org.	3600	IN	NS	ns3.isc-sns.i	nfo.
;; ADDITIONAL SECT:	ION:				
ns1.isc-sns.net.	3600	IN	А	72.52.71.1	
ns2.isc-sns.com.	3600	IN	А	38.103.2.1	
ns3.isc-sns.info.	3600	IN	А	63.243.194.1	

<pre>\$ dig @ns1.isc-sns ;; Got answer: ;; ->>HEADER<<- op ;; QUERY: 1, ANSWE</pre>	.net ww code: Q R: 1, A	W.fre UERY, UTHOR	ebsd.or; status ITY: 3,	g +norecurse : NOERROR, id: 1 ADDITIONAL: 3	.7037
;; QUESTION SECTIO ;www.freebsd.org.	N:	IN	A		How many answers? How many authoritative records? How many additional records?
;; ANSWER SECTION:	3600	ΤN	Δ	69.147.83.33	ן
<pre>;; AUTHORITY SECTI freebsd.org. freebsd.org.</pre>	ON: 3600 3600	IN IN	NS NS	ns2.isc-sns.co ns1.isc-sns.ne	om. et.
<pre>freebsd.org. ;; ADDITIONAL SECT</pre>	3600 ION:	IN	NS	ns3.isc-sns.ir	nfo.
ns1.isc-sns.net.	3600	IN	А	72.52.71.1	
ns2.isc-sns.com.	3600	IN	А	38.103.2.1	
ns3.isc-sns.info.	3600	IN	А	63.243.194.1	

Protocol Layering

- Networks use a stack of protocol layers
 - Each layer has different responsibilities.
 - Layers define abstraction boundaries

Lower layers provide services to layers above

- Don't care what higher layers do

Higher layers use services of layers below

 Don't worry about how the layer below works **Application Layer**

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Transport Layer perspective

- Networks use a stack of protocol layers
 - Each layer has different responsibilities.
 - Layers define abstraction boundaries
- Lower layers provide services to layers above
 - Don't care what higher layers do
- Higher layers use services of layers below
 - Don't worry about how the layer below works

Layering and encapsulation

Ports: An Analogy

- Alice is pen pals with Bob. Alice's roommate, Carol, is also pen pals with Bob
- Bob's replies are addressed to the same global (IP) address
 - How can we tell which letters are for Alice and which are for Bob?
- Solution: Add a room number (port number) inside the letter
 - In private homes, usually a port number is meaningless
 - But, in public offices (servers), like Cory Hall, the port numbers are constant and known

Each application on a host is identified by a *port number*

TCP connection established between port A on host X to port B on host Y Ports are 1–65535 (16 bits)

Some destination port numbers used for specific applications by convention

Ports

Ports help us distinguish between different applications on the same computer or server

- On private computers, port numbers can be random
- On public servers, port numbers should be constant and well-known (so users can access the right port)

Common Ports

Port	Application
80	HTTP (Web)
443	HTTPS (E2E encrypted Web)
25	SMTP
22	SSH
23	Telnet
53	DNS

Transmission Control Protocol (TCP)

- Two army divisions (blue) surround enemy (red)
 - Each division led by a general
 - Both must agree when to simultaneously attack
 - If either side attacks alone, defeat
- Generals can only communicate via messengers
 - Messengers may get captured (unreliable channel)

- How to coordinate?
 - Send messenger: "Attack at dawn"
 - What if messenger doesn't make it?

- How to be sure messenger made it?
 - Send acknowledgment: "I delivered message"

In the "two generals problem", can the two armies reliably coordinate their attack? (using what we just discussed)

- A. Yes (explain how)
- B. No (explain why not)

- Result
 - Can't create perfect channel out of faulty one
 - <u>Can only increase probability of success</u>

Designing reliability over an unreliable link. What can go wrong?

- A. Packets can be dropped
- B. Packets can arrive out or order
- c. Acknowledgements can arrive out of order
- D. All of the above
- E. There are more issues....

Designing reliability over an unreliable link. What can go wrong?

- Problem: IP packets have a limited size. To send longer messages, we have to manually break messages into packets
 - When sending packets: TCP will automatically split up messages
 - When receiving packets: TCP will automatically reassemble the packets
 - Now the user doesn't need to manually split up messages!
- Problem: Packets can arrive out of order
 - When sending packets: TCP labels each byte of the message with increasing numbers
 - When receiving packets: TCP can use the numbers to rearrange bytes in the correct order
- Problem: Packets can be dropped
 - When receiving packets: TCP sends an extra message acknowledging that a packet has been received
 - When sending packets: If the acknowledgement doesn't arrive, re-send the packet

Transmission Control Protocol (TCP)

- Provides a byte stream abstraction
 - Bytes go in one end of the stream at the source and come out at the other end at the destination
 - TCP automatically breaks streams into **segments**,
- Provides ordering
 - Segments contain sequence numbers, so the destination can reassemble the stream in order
- Provides reliability
 - The destination sends acknowledgements (ACKs) for each sequence number received
 - If the source doesn't receive the ACK, the source sends the packet again
- Provides ports
 - Multiple services can share the same IP address by using different ports