CS 88: Security and Privacy

16: MACs and PKI

03-26-2024
slides courtesy Christo Wilson, Vitaly Shmatikov

Confidentiality ~ Keep others from Block Ciphers

reading Alice’s messages/data
Limitations?
 what if Eve modifies the
packet in transit?

* How do we share keys?

Scenarios and Goals

Keep others from undetectably Message Authentication Codes (MACs)

Integrit
Brity tampering with Alice’s messages/data

BLACKBOX #2:
MESSAGE AUTHENTICATION CODE (MAC)

Symmetric Key Cryptography

m ¢ CONFIDENTIALITY
Block ciphers
K — K — Deterministic = use IVs
Fixed block size = use encryption “modes”

Could we simply use symmetric key cryptography (i.e. block
ciphers) to achieve integrity?

CONFIDENTIALITY

Block ciphers
Deterministic = use IVs
Fixed block size = use encryption “modes”

A. Yes
B. No
INTEGRITY C. Maybe
Message Authentication Codes (MACs) D. Under some circumstances

Send (message, tag) pairs
Verify that they match

R——1R
K — K
]

Confidentiality vs. Integrity

VrfY(k, Cy, tZ)x 0
Ensuring that a received ciphertext originated from the intended party, and the ciphertext was not modified.

Even if an attacker controls the channel!

Message Authentication Codes

A message authentication code is defined by three PPT algorithms (Gen, Mac, Vrfy):
— Gen: takes as input an n bit string; outputs k. (Assume Ikl=n.)

— Mac: takes as input key k and message me{0,1}"; outputs tag t t ;= Mac(k, m)

— Vrfy: takes key k, message m, and tag t as input; outputs 1 (“accept”) or 0 (“reject”)

For all m and all k output by Gen, Vrfy(K, m, Mac(k, m)) = 1

Message Authentication Codes

* Sign: takes a key and a message and outputs a “tag”
e Sgn(k,m) =1t

 Verify: takes a key, a message, and a tag, and outputs Y/N
o Vfy(k,m,1) = {Y,N}

e Correctness:
e Viy(k, m, Sgn(k, m)) =Y (or 1)

General adversarial goals

* Total Break: Adversary is able to find the secret key for signing and forge any signature
of any message

* Selective forgery: Adversary is able to create valid signatures on a message chosen by
someone else, with a significant probability.

e Existential Forgery: Adversary can create a pair of (message, signature) such that the
signature of the message is valid.

e Ciphertext only Attack: Adversary knows only the verification function

 Known Plaintext Attack: Adversary knows a list of messages previously signed by Alice

* Chosen Plaintext Attack: Adversary can choose what messages they want Alice to sign,
and knows both the message and the corresponding signature

Attacker Goal: Existential Forgery

e A MAC is secure if an attacker cannot demonstrate an

existential forgery despite being able to perform a chosen
plaintext attack:

* Chose plaintext:
e Attacker gets to choose m1, m2, m3, ...

e And in return gets a properly computed t1, t2, t3, ...

e Existential forgery:
e Construct a new (m,t) pair such that Vfy(k, m, t) =Y

Attacker Goal: Existential Forgery

e A MAC is secure if an attacker cannot demonstrate an

existential forgery despite being able to perform a chosen
plaintext attack:

* Chose plaintext:

e Attacker gets to choose m1, m2, m3, ...

* And in return gets a properly computed t1, t2, t3, ...
e Existential forgery:

e Construct a new (m,t) pair such that Vfy(k, m, t) =Y

* Let MAC be a pseudorandom function!

Block Ciphers as fixed length MACs

ENCRYPTION

Encryption Function: E: {0, 1}* x {0, 1}" -> {0, 1}
Fix the key K, then, E,: {0, 1}" -> {0, 1}
° pla'm’text size:n
Key K — * tagsizen
l E,: permutation on n-bit strings.

3

* invertible (bgecﬁve ﬁmcﬁon) given the key

Once the key is fixed: MIAC(k,m) is indistinguishable from a function chosen uniformly at
random from all possible functions between block-sized binary strings.

Block Ciphers as fixed length MACs

* We can construct a secure MAC for short, fixed-length messages based on
any block cipher

* But we want to extend this to a secure MAC for arbitrary-length
messages.

e What can we do?
e CBC-MAC!

CBC MAC

* What is one important difference you observe compared to CBC-Mode
encryption?

Plaintext 1 Plaintext 2 Plaintext n
Ll i ririd Ll i ririd Ll i ririd

K —p Block Clpher Block Clpher K —p Block Clpher
Encryption Encryption Encryption

|

HEEEEEEN
Tagt

CBC MAC

* CBC-MAC is deterministic (no 1V)

* In CBC-MAUC, only the final value is output (tag t) — Verification is done by
re-computing the result

Plaintext 1 Plaintext 2 Plaintext n
Ll i ririd Ll i ririd Ll i ririd

K —p Block Clpher Block Clpher K —p Block Clpher
Encryption Encryption Encryption

tag t

BLACKBOX #3:
HASH FUNCTIONS

Hash Function Properties
* Very fast to compute

* Takes arbitrarily-sized inputs, returns fixed-sized output

® Pre-image resistant:
Given H(m), hard to determine m

e Collision resistant
Given m and H(m), hard to find m’# m s.t. Him) = H(m")

Good hash functions: SHA family (SHA-256, SHA-512, ...)

Authenticated Encryption: Secrecy + Integrity

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

c, t
k1, k2 x < x > 8k1, k2

m
Enc(kl, m) = ¢ Dec(kl, ¢) = m
Mac(k2, m) = t Verify(k2, m, t) = 17

A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Encrypt and Authenticate: Is it secure?

Encrypt then authenticate

We have seen how we can achieve two independent goals: encryption and authentication.

How about putting them together?

c, t
> 8k1, k2
]

Verify(k2, c, t) = 17
Dec(kl, ¢) =m

A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Encrypt then Authenticate: Is it secure?

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

» Securely = secrecy and integrity

» Session = period of time over which parties are willing to maintain state.

Enc,(m,)

Enck(ml) >
x Enck(mi’ Enck(mll’ 8 x _Enc(m,) | > 8
k

_Enc,(m,)

Enc,(m,) Enck(mz)
>< A. Yes
Enck(mz) Enck(ml) B. No

k

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

» Securely = secrecy and integrity

» Session = period of time over which parties are willing to maintain state.

Enc,(m,)

Enc,(m,) :
x Enck(mi’ Enck(mL 8 x _Enc(m,) | > 8
k k

_Enc,(m,)

Enc (“Bob”| m, | 1)

Enc,(m,) Enck(mz) »
x Enck(mz) >< Enck(ml) 8 x Ean(Bob | m, | 2) , 8
k

k k Enc (“Alice” | m, | 1)

Symmetric Key Cryptography

CONFIDENTIALITY

Block ciphers
Deterministic = use IVs
Fixed block size = use encryption “modes”

INTEGRITY

Message Authentication Codes (MACs)

Send (message, tag) pairs
Verify that they match

R——1
K —> K
]

Symmetric Key Cryptography

b ¢ CONFIDENTIALITY
Block ciphers
K — K— Deterministic = use IVs
Fixed block size = use encryption “modes”
C m

m ¢ INTEGRITY
Message Authentication Codes (MACs)
K— K— Send (message, tag) pairs

Verify that they match
Next
How do we establish K? o &
_ K — K
How do we know with whom x
we are communicating?

BLACKBOX #4:
DIFFIE HELLMAN KEY ESTABLISHMENT

Asymmetric/Public-key Cryptography

* main insight: separate keys for different functions

* Keys come in pairs, and are related to each other by a specific algorithm.

e Public key (PK): used to encrypt or verify signatures

* Private key (SK): used to decrypt and sign

* Encryption and decryption are inverse operations

* Secrecy: ciphertext reveals nothing about the plaintext

e computationally hard to decrypt in polynomial time without key

Diffie-Helman Key Exchange

x mod N

g is a generator of mod N if
{1, 2, ..., N-1} = {g8 mod N, gl mod N, ..., gN2mod N}

N=5,g=3
30mod5=1 3'mod5=3 32mod5=4 33mod5=2

Given x and g, it is efficient to compute
g* mod N

Given g and g%, it is efficient to compute x
(simply take log, g*)

Given g and gx mod N it is infeasible to compute x
Discrete log problem

Ren
g*mod N N b
gt mod N &
gemod N

Public knowledge: g and N

a g N
gtmod N

Pick random a
gemod N
o

gb mod N Pick random b

G
Compute (g> mod N)« =(gab mod N) Compute (g mod N)b =(gab mod N)

Shared secret: This is the key

) YR

gemod N
gt mod N

(gab mod N)

Note that just multiplying g and g won’t suffice:
g?modN » gtmod N = getbmod N

Key property:
An eavesdropper cannot infer the shared secret (ge).

But what about active intermediaries?

) ¥R

gemod N
gdmod N

(gab mod N)

Given g and g mod N it is infeasible to compute x
Discrete log problem

Note that just multiplying g¢ and g® won’t suffice:
g°modN * gmod N = getbmod N

Key property:
An eavesdropper cannot infer the shared secret (g).

But what about active intermediaries?

The attacker can interpose between the two communicating parties
and insert, delete, and modify messages.

‘thinks he is talking to 8
8thinks he is talking to !

Pick random a Pick random x Pick random
P
‘ -
grmod N g'mod N
(gﬂx mod N) (g * mod N)
‘thinks this is his 8thinks this is his
shared key with shared key with

The attacker can now eavesdrop on the conversation.
Key property: Diffie-Hellman is not resilient to a MITM attack

The attacker can interpose between the two communicating parties
and insert, delete, and modify messages.

‘thinks he is talking to 8
8thinks he is talking to !

Pick random a Pick random x Pick random
P
‘ -
grmod N g'mod N
(gﬂx mod N) (g * mod N)
‘thinks this is his 8thinks this is his
shared key with shared key with

The attacker can now eavesdrop on the conversation.
Key property: Diffie-Hellman is not resilient to a MITM attack

Fix: Need to authenticate messages

Computational complexity for integer
problems

* Integer multiplication is efficient to compute

* There is no known polynomial-time algorithm for general purpose

factoring.

* Efficient factoring algorithms for many types of integers. EFasy to find

small factors of random integers.
* Modular exponentiation is efficient to compute

* Modular inverses are efficient to compute

Textbook RSA Encryption

Public Key pk Secret key sK

N = pg modulus P G primes

d decrypﬁon exponent
d = el mod (p-1)(g-1) = e! mod @(N)

x - 8
. e ——
—_

¢ = Encp(m) =me mod N

e encrypﬁon exponent

d = Decg(c) =c® mod N

RSA Security

* Best algorithm to break RSA: Factor N and compute d
* Factoring is not efficient in general
* Current key size recommendations: N >= 2048 bits

* Do not implement this yourself. Factoring is hard only for some
integers, and textbook RSA is insecure.

