
CS 88: Security and Privacy
16: MACs and PKI

03-26-2024
slides courtesy Christo Wilson, Vitaly Shmatikov

Symmetric Key Cryptography

Keep others from
reading Alice’s messages/data

Confidentiality Block Ciphers

Limitations?
• what if Eve modifies the

packet in transit?
• How do we share keys?

Scenarios and Goals

Keep others from undetectably
tampering with Alice’s messages/data

Integrity Message Authentication Codes (MACs)

Symmetric Key Cryptography

Could we simply use symmetric key cryptography (i.e. block
ciphers) to achieve integrity?

A. Yes
B. No
C. Maybe
D. Under some circumstances

Confidentiality vs. Integrity

c1, t1 c2, t2

t = MAC(k, c) Vrfy(k, c, t) = 1

Vrfy(k, c2, t2) = 0

Ensuring that a received ciphertext originated from the intended party, and the ciphertext was not modified.

Even if an attacker controls the channel!

Message Authentication Codes

A message authentication code is defined by three PPT algorithms (Gen, Mac, Vrfy):
– Gen: takes as input an n bit string; outputs k. (Assume |k|≥n.)
– Mac: takes as input key k and message m∈{0,1}*; outputs tag t t := Mac(k, m)
– Vrfy: takes key k, message m, and tag t as input; outputs 1 (“accept”) or 0 (“reject”)

For all m and all k output by Gen, Vrfy(K, m, Mac(k, m)) = 1

Message Authentication Codes

(or 1)

General adversarial goals

• Total Break: Adversary is able to find the secret key for signing and forge any signature
of any message

• Selective forgery: Adversary is able to create valid signatures on a message chosen by
someone else, with a significant probability.

• Existential Forgery: Adversary can create a pair of (message, signature) such that the
signature of the message is valid.

• Ciphertext only Attack: Adversary knows only the verification function
• Known Plaintext Attack: Adversary knows a list of messages previously signed by Alice
• Chosen Plaintext Attack: Adversary can choose what messages they want Alice to sign,

and knows both the message and the corresponding signature

Attacker Goal: Existential Forgery

Attacker Goal: Existential Forgery

• Let MAC be a pseudorandom function!

Block Ciphers as fixed length MACs

Encryption Function: E: {0, 1}k x {0, 1}n -> {0, 1}n
Fix the key K, then, Ek: {0, 1}n -> {0, 1}n
• plaintext size: n
• tag size:n
Ek: permutation on n-bit strings.
• invertible (bijective function) given the key

Once the key is fixed: MAC(k,m) is indistinguishable from a function chosen uniformly at
random from all possible functions between block-sized binary strings.

1

t

Block Ciphers as fixed length MACs

• We can construct a secure MAC for short, fixed-length messages based on
any block cipher

• But we want to extend this to a secure MAC for arbitrary-length
messages.
• What can we do?
• CBC-MAC!

CBC MAC

• What is one important difference you observe compared to CBC-Mode
encryption?

Plaintext 1

Block Cipher
EncryptionK …

Plaintext 2

Block Cipher
EncryptionK

Plaintext n

Block Cipher
EncryptionK

Tag t

CBC MAC

Plaintext 1

Block Cipher
EncryptionK …

Plaintext 2

Block Cipher
EncryptionK

Plaintext n

Block Cipher
EncryptionK

tag t

• CBC-MAC is deterministic (no IV)
• In CBC-MAC, only the final value is output (tag t) – Verification is done by

re-computing the result

Hash Function Properties

Authenticated Encryption: Secrecy + Integrity

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, m) = t

Dec(k1, c) = m
Verify(k2, m, t) = 1?

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

Encrypt and Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Encrypt then authenticate

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, c) = t

Verify(k2, c, t) = 1?
Dec(k1, c) = m

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

Encrypt then Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state.

kkk

k k

k

A. Yes
B. No

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state.

kkk

k k k

k

k

Symmetric Key Cryptography

Next

Symmetric Key Cryptography

Asymmetric/Public-key Cryptography

• main insight: separate keys for different functions

• Keys come in pairs, and are related to each other by a specific algorithm.

• Public key (PK): used to encrypt or verify signatures

• Private key (SK): used to decrypt and sign

• Encryption and decryption are inverse operations

• Secrecy: ciphertext reveals nothing about the plaintext

• computationally hard to decrypt in polynomial time without key

Diffie-Helman Key Exchange

Fix: Need to authenticate messages

Computational complexity for integer
problems
• Integer multiplication is efficient to compute

• There is no known polynomial-time algorithm for general purpose
factoring.

• Efficient factoring algorithms for many types of integers. Easy to find
small factors of random integers.

• Modular exponentiation is efficient to compute

• Modular inverses are efficient to compute

Textbook RSA Encryption
Public Key pk
N = pq modulus
e encryption exponent

Secret key sk
p, q primes
d decryption exponent
d = e-1 mod (p-1)(q-1) = e-1 mod 𝛷(N)

pk = (N, e)

c = EncPK(m) = me mod N
d = DecSK(c) = cd mod N

RSA Security

• Best algorithm to break RSA: Factor N and compute d

• Factoring is not efficient in general

• Current key size recommendations: N >= 2048 bits

• Do not implement this yourself. Factoring is hard only for some
integers, and textbook RSA is insecure.

