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Symmetric Key Cryptography

Keep others from 
reading Alice’s messages/data

Confidentiality Block Ciphers

Limitations?
• what if Eve modifies the 

packet in transit?
• How do we share keys?



Scenarios and Goals

Keep others from undetectably 
tampering with Alice’s messages/data

Integrity Message Authentication Codes (MACs)





Symmetric Key Cryptography



Could we simply use symmetric key cryptography (i.e. block 
ciphers) to achieve integrity?

A. Yes
B. No
C. Maybe
D. Under some circumstances



Confidentiality vs. Integrity

c1, t1 c2, t2

t = MAC(k, c) Vrfy(k, c, t) = 1

Vrfy(k, c2, t2) = 0 

Ensuring that a received ciphertext originated from the intended party, and the ciphertext was not modified.

Even if an attacker controls the channel!



Message Authentication Codes

A message authentication code is defined by three PPT algorithms (Gen, Mac, Vrfy):
–  Gen: takes as input an n bit string; outputs k. (Assume |k|≥n.)
–  Mac: takes as input key k and message m∈{0,1}*; outputs tag t t := Mac(k, m)
–  Vrfy: takes key k, message m, and tag t as input; outputs 1 (“accept”) or 0 (“reject”)

For all m and all k output by Gen, Vrfy(K, m, Mac(k, m)) = 1



Message Authentication Codes

(or 1)



General adversarial goals

• Total Break: Adversary is able to find the secret key for signing and forge any signature 
of any message

• Selective forgery: Adversary is able to create valid signatures on a message chosen by 
someone else, with a significant probability. 

• Existential Forgery: Adversary can create a pair of (message, signature) such that the 
signature of the message is valid. 

• Ciphertext only Attack: Adversary knows only the verification function 
• Known Plaintext Attack: Adversary knows a list of messages previously signed by Alice
• Chosen Plaintext Attack: Adversary can choose what messages they want Alice to sign, 

and knows both the message and the corresponding signature



Attacker Goal: Existential Forgery



Attacker Goal: Existential Forgery

• Let MAC be a pseudorandom function! 



Block Ciphers as fixed length MACs

Encryption Function: E: {0, 1}k x {0, 1}n -> {0, 1}n 
Fix the key K, then, Ek: {0, 1}n -> {0, 1}n
• plaintext size: n
• tag size:n
Ek: permutation on n-bit strings. 
• invertible (bijective function) given the key

Once the key is fixed: MAC(k,m) is indistinguishable from a function chosen uniformly at 
random from all possible functions between block-sized binary strings.
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Block Ciphers as fixed length MACs

• We can construct a secure MAC for short, fixed-length messages based on 
any block cipher

• But we want to extend this to a secure MAC for arbitrary-length 
messages. 
• What can we do?
• CBC-MAC!



CBC MAC 

• What is one important difference you observe compared to CBC-Mode 
encryption? 

Plaintext 1

Block Cipher 
EncryptionK …

Plaintext 2

Block Cipher 
EncryptionK

Plaintext n

Block Cipher 
EncryptionK

Tag t



CBC MAC 

Plaintext 1

Block Cipher 
EncryptionK …

Plaintext 2

Block Cipher 
EncryptionK

Plaintext n

Block Cipher 
EncryptionK

tag t

• CBC-MAC is deterministic (no IV)
• In CBC-MAC, only the final value is output (tag t) –  Verification is done by 

re-computing the result





Hash Function Properties



Authenticated Encryption: Secrecy + Integrity

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, m) = t

Dec(k1, c) = m
Verify(k2, m, t) = 1?

We have seen how we can achieve two independent goals: encryption and authentication. 
How about putting them together?

Encrypt and Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic



Encrypt then authenticate

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, c) = t

Verify(k2, c, t) = 1?
Dec(k1, c) = m

We have seen how we can achieve two independent goals: encryption and authentication. 
How about putting them together?

Encrypt then Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic



Secure Sessions: Consider parties who wish to communicate 
securely over the course of a session using authenticated 
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state. 
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A. Yes
B. No
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Symmetric Key Cryptography



Next

Symmetric Key Cryptography





Asymmetric/Public-key Cryptography

• main insight: separate keys for different functions

• Keys come in pairs, and are related to each other by a specific algorithm. 

• Public key (PK): used to encrypt or verify signatures

• Private key (SK): used to decrypt and sign

• Encryption and decryption are inverse operations

• Secrecy: ciphertext reveals nothing about the plaintext

• computationally hard to decrypt in polynomial time without key



Diffie-Helman Key Exchange











Fix: Need to authenticate messages



Computational complexity for integer 
problems
• Integer multiplication is efficient to compute

• There is no known polynomial-time algorithm for general purpose 
factoring. 

• Efficient factoring algorithms for many types of integers. Easy to find 
small factors of random integers. 

• Modular exponentiation is efficient to compute

• Modular inverses are efficient to compute



Textbook RSA Encryption
Public Key pk
N = pq modulus
e encryption exponent

Secret key sk
p, q primes
d decryption exponent
d = e-1 mod (p-1)(q-1) = e-1 mod 𝛷(N)

pk = (N, e)

c = EncPK(m) = me mod N
d = DecSK(c) = cd mod N



RSA Security

• Best algorithm to break RSA: Factor N and compute d

• Factoring is not efficient in general

• Current key size recommendations: N >= 2048 bits

• Do not implement this yourself. Factoring is hard only for some 
integers, and textbook RSA is insecure.


