
CS 88: Security and Privacy
14: Authentication

03-19-2023
slides courtesy Christo Wilson, Vitaly Shmatikov

Reading Quiz

Authentication
• Authentication is the process of verifying an actor’s identity

• Critical for security of systems
• Permissions, capabilities, and access control are all contingent upon

knowing the identity of the actor

• Typically parameterized as a username and a secret
• The secret attempts to limit unauthorized access

• Desirable properties of secrets include being unforgeable,
unguessable, and revocable

Types of Secrets
• Actors provide their secret to log-in to a system
• Three classes of secrets:

1. Something you know
• Example: a password

2. Something you are
• Examples: fingerprint, voice scan, iris scan

3. Somewhere you are
• IP address, geolocation

4. Something you have
• Examples: a smart card or smart phone, 2FA

Today’s Topics
• Password Storage

• How should you securely store password to prevent cracking?
• Are there ways to help detect password breaches?

• Password Cracking
• Basic attacks: brute forcing and dictionary
• Hash chains
• Rainbow tables

• Local and Distributed Authentication Systems
• Unix/Linux PAM system
• NIS
• Needham-Schroeder
• Kerberos

Attacker Goals and Threat Model
• Assume we have a system storing usernames and passwords
• The attacker has access to the password database/file
• Our goal: even if the database is stolen, attacker should learn as little

as possible about the passwords.

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

Cracked Passwords

Database

I want to login to
those user accounts!

Password Storage Summary
1. Never store passwords in plain text
2. Always salt and hash passwords before storing them
3. Use hash functions with a high work factor

• These rules apply to any system that needs to authenticate users
• Operating systems, websites, etc.

Password Quality
𝑆 = 	 𝑙𝑜𝑔!	𝑁" à 𝐿 = #

$%&!	(

• How do we measure password quality? Entropy
• N – the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
• L – the length of the password
• S – the strength of the password, in bits

• Formula tells you length L needed to achieve a desired strength S…
• … for randomly generated passwords

• Is this a realistic measure in practice?

The Strength of Random Passwords
𝑆 = 	𝐿	 ∗ 𝑙𝑜𝑔!𝑁

0

25

50

75

100

125

150

175

200

0 5 10 15 20 25 30 35

St
re

ng
th

 (B
its

)

Password Length (Characters)

26+26+10 Characters

26+26 Characters

26 Characters

Very
Weak

Very
Strong

Password Cracking

Password Theory

Hash Chains

Rainbow Tables

Uncompressed Hash Chain Example

p' H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’ R(h’’’) = p*
abcde \\WPNP_ vlsfqp _QOZLR eusrqv CMRQ5X cjldar
passw VZDGEF gfnxsk ZLGEKV yookol EBOTHT zvxscs
12345 SM-QK\9 sawtzg RHKP_D gvmdwm BYE4LB wjizbn
secrt OKFTaY btweoz WA15HK ttgovl Q_4\6ZB eivlqc

K = 3

Only these two columns
get stored on disk

Link 1 Link 2 Link 3

Rainbow Tables

Rainbow tables improve on hash chains by reducing the likelihood of
collisions
Key idea: instead of using a single reduction R, use a family of
reductions {R1, R2, … , Rk}
• Usage of H is the same as for hash chains
• A collisions can only occur between two chains if it happens at the same

position (e.g. Ri in both chains)

Final Thoughts on Rainbow Tables

Caveats
• Tables must be built for each hash function and character set
• Salting and key stretching defeat rainbow tables

Rainbow tables are effective in some cases, e.g. MD5 and NTLM
• Precomputed tables can be bought or downloaded for free

Password Management

Password Reuse

People have difficulty remembering >4 passwords
• Thus, people tend to reuse passwords across services
• What happens if any one of these services is compromised?

Service-specific passwords are a beneficial form of
compartmentalization
• Limits the damage when one service is inevitably breaches

Use a password manager
Some service providers now check for password reuse
• Forbid users from selecting passwords that have appeared in leaks

Biometric Two Factor
Authentication

Biometrics

SMS

Authentication Codes

Smartcards & Hardware Tokens

Identification vs. Authentication

• Goal: associate an identity with an event
• Example: a fingerprint at a crime scene
• Key question: given a particular biometric reading, does there exist another

person who has the same value of this biometric?

• Goal: verify a claimed identity
• Example: fingerprint scanner to enter a building
• Key question: do there exist any two persons who have the same value of this

biometric?
• Birthday paradox!

Forging Handwriting
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained
on handwriting samples

Biometrics

Fundamental Issue With Biometrics

Biometrics are immutable
• You are the password, and you can’t change
• Unless you plan on undergoing plastic surgery?

Once compromised, there is no reset
• Passwords and tokens can be changed

Example: the Office of Personnel Management (OPM) breach
• US gov agency responsible for background checks
• Had fingerprint records of all people with security clearance
• Breached by China in 2015, all records stolen :(

Play-Doh Fingers

• Alternative to gelatin
• Play-Doh fingers fool 90% of

fingerprint scanners
• Clarkson University study

• Suggested perspiration measurement
to test “liveness” of the finger

[Schuckers]

Token-based Two Factor
Authentication

Types of Secrets
Actors provide their secret to log-in to a system
Three classes of secrets:

1. Something you know
• Example: a password

2. Something you are
• Examples: fingerprint, voice scan, iris scan

3. Something you have
• Examples: a smart card or smart phone

Something You Have

Two-factor authentication has become more commonplace
Possible second factors:
• SMS passcodes
• Time-based one time passwords
• Hardware tokens

SMS Two Factor

Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS

sent to your number

SMS two factor is deprecated. Why?
Social engineering the phone company

1. Call and pretend to be the victim
2. Say “I got a new SIM, please activate it”
3. If successful, phone calls and SMS are now sent to your

SIM in your phone, instead of the victim

Not hypothetical: successfully used against many
victims

One Time Passwords

Generate ephemeral passcodes that
change over time
To login, supply normal password and
the current one time password
Relies on a shared secret between your
mobile device and the service provider

• Shared secret allows both parties to
know the current one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes
every few
minutes

Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

Given K, this algorithm can
be run on your phone and by

the service provider

Secret Sharing for TOTP

Hardware Two Factor

Special hardware designed to hold
cryptographic keys
Physically resistant to key extraction
attacks
• E.g. scanning tunneling electron

microscopes
Uses:
• 2nd factor for OS log-on
• 2nd factor for some online services
• 2nd factor for password manager
• Storage of PGP and SSH keys

Universal 2nd Factor (U2F)

Supported by Chrome, Opera, and Firefox

Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose your

primary key ;)

Authentication in Linux
Unix, PAM, and crypt

Network Information Service (NIS, aka Yellow Pages)

Needham-Schroeder and Kerberos

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?

Authentication in Unix/Linux

• Users authenticate with the system by interacting with login
• Prompts for username and password
• Credentials checked against locally stored credentials

• By default, password policies specified in a centralized, modular way
• On Linux, using Pluggable Authentication Modules (PAM)
• Authorizes users, as well as environment, shell, prints MOTD, etc.

Example PAM Configuration
cat /etc/pam.d/system-auth
#%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try_first_pass nullok sha512 shadow
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

• Use SHA512 as the hash function
• Use /etc/shadow for storage

Unix Passwords

• Traditional method: crypt
• First eight bytes of password used as key (additional bytes are ignored)
• 12-bit salt
• 25 iterations of DES on a given passwords

• Modern version of crypt are more extensible
• Full password used
• Up to 16 bytes of salt
• Support for additional hash functions like MD5, SHA256, and SHA512
• Key lengthening: defaults to 5000 iterations, up to 108 – 1

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Are world-readable hashes a good idea?

Password Storage on Linux

44

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 = SHA512

Distributed Authentication

Distributed Authentication

• Design a system that would authenticate you to the lab machines
• should we have a /etc/shadow per machine that manages logins?
• how about access to printers and files on other machines where a user may

not have an account?

The Yellow Pages

• Network Information Service (NIS), a.k.a. the Yellow Pages
• Developed by Sun to distribute network configurations
• Central directory for users, hostnames, email aliases, etc.
• Exposed through yp* family of command line tools

• For instance, depending on /etc/nsswitch.conf, hostname lookups can
be resolved by using
• /etc/hosts
• DNS
• NIS

• Superseded by NIS+, LDAP (Lightweight Directory Access Protocol)

NIS Password Hashes

[cbw@workstation ~] ypcat passwd
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118::/home/adkap:/bin/zsh
amitpoon:i3LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA06wxjJEUgBE:13055:65101::/home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
ppkk315:s6CTSAkqqr/nU:14061:65101::/home/ppkk315:/bin/bash
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNe18GpeQj.:13682:65104::/home/sushma:/bin/bash
guerin1:n0Da2TmO9MDBI:14512:65105::/home/guerin1:/bin/bash

• Crypt based password hashes
• Is this secure?

Distributed Authentication Revisited

• Goal: a user would like to use
some resource on the network
• File server, printer, database,

mail server, etc.

• Problem: access to resources
requires authentication
• Auth Server contains all

credential information
• You do not want to replicate the

credentials on all services

cbw

Database

Auth Server

What’s the threat model here?

Distributed Auth Example

• Idea: client forwards
user/password to service,
service queries Auth Server cbw

Database

Auth Server

cbw:p4ssw0rd

Please verify
cbw:p4ssw0rd

Looks good!

cbw:p4ssw0rd

Symmetric Key Agreement among Multiple Parties

• For a group of N parties, every pair needs to share a different
symmetric key
• What is the number of keys?
• What secure channel to use to establish the keys?

• How to establish such keys
• Symmetric Encryption - Use a central authority, a.k.a. (TTP).
• Asymmetric Encryption – PKI.

Needham-Schroeder Protocol

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

• Let Alice A and Bob B be two parties that trust server S
• KAS and KBS are shared secrets between [A, S] and [B, S]
• KAB is a negotiated session key between [A, B]
• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

KBS is not sent in the clear, authenticates B

• Which message authenticates Alice and the
Server?

• What purpose does the challenge nonce Nj
have?

• How can Bob be sure that he is receiving a
session key from the trusted server? (note that
Bob does not talk to the trusted server at any
point)

Needham-Schroeder Example

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

cbw

Database

Auth Server

cbw, db, 𝑁!

{𝑁!}Kcbw-db

{𝑁) , Kcbw-db, db, {Kcbw-db, cbw}Kdb
}Kcbw

cbw

cbw

db

db
cbw-db

cbw-db
{Kcbw-db, cbw}Kdb
{𝑁! − 1}Kcbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

cbw, db, 𝑁!

{𝑁!}Kcbw-db
cbw, db, 𝑁!{𝑁) , Kevil, db, {Kevil, cbw}Kdb

}Kcbw
{Kevil, cbw}Kdb

{Kcbw-db, cbw}Kdb

{𝑁) , Kcbw-db, db, {Kcbw-db, cbw}Kdb
}Kcbw

cbwcbw

db

db

evil cbw-db

Replay Attack

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

Typical, Benign Protocol

• Let’s say an attacker hacks Alice and
steals KAS and KAB what damage can the
attacker do?

• In particular, which steps of the protocol
can they spoof? (act as Alice)?

• Let’s say Alice discovers that she has been
hacked and changes KAS to KANEW’S will the
attack still succeed?

Kerberos

• Created as part of MIT Project Athena
• Based on Needham-Schroeder

• Provides mutual authentication over untrusted networks
• Tickets as assertions of authenticity, authorization
• Forms basis of Active Directory authentication in Microsoft networks

• Principals
• Client
• Server
• Key Distribution Center (KDC)
• Authentication server (AS)
• Ticket granting server (TGS)

Kerberos Example

cbw

Database

Auth Server

cbw

{T - 1}Kcbw-db

{cbw, Kcbw-tgs}Kcbw
, TGT

cbw

cbw

tgt

db

cbw-tgs

cbw-db

TGT, db, {cbw, T}Kcbw-tgs{Kcbw-db}Kdb
, {cbw, T}Kcbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs
, {Kcbw-db}Kdb

cbw-db

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

• Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?
• Use NTP (Network Time Protocol)

Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf

• For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent
work of Blas Ur: http://www.blaseur.com/pubs.htm

https://wkr.io/
http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf
http://www.blaseur.com/pubs.htm

Symmetric Key Cryptography

Keep others from
reading Alice’s messages/data

Confidentiality Block Ciphers

Limitations?
• what if Eve modifies the

packet in transit?
• How do we share keys?

Scenarios and Goals

Keep others from undetectably
tampering with Alice’s messages/data

Integrity Message Authentication Codes (MACs)

Symmetric Key Cryptography

Could we simply use symmetric key cryptography (i.e. block
ciphers) to achieve integrity?

A. Yes
B. No
C. Maybe
D. Under some circumstances

General adversarial goals

• Total Break: Adversary is able to fund the secret key for signing and forge any signature
of any message

• Selective forgery: Adversary is able to create valid signatures on a message chosen by
someone else, with a significant probability.

• Existential Forgery: Adversary can create a pair of (message, signature) such that the
signature of the message is valid.

• Ciphertext only Attack: Adversary knows only the verification function
• Known Plaintext Attack: Adversary knows a list of messages previously signed by Alice
• Chosen Plaintext Attack: Adversary can choose what messages they want Alice to sign,

and knows both the smessage and the corresponding signature

Attacker Goal: Existential Forgery

Hash Function Properties

Authenticated Encryption: Secrecy + Integrity

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, m) = t

Dec(k1, c) = m
Verify(k2, m, t) = 1?

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

Encrypt and Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Encrypt then authenticate

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, c) = t

Verify(k2, c, t) = 1?
Dec(k1, c) = m

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

Encrypt then Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state.

A. Yes
B. No

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state.

Symmetric Key Cryptography

Next

Symmetric Key Cryptography

Asymmetric/Public-key Cryptography

• main insight: separate keys for different functions

• Keys come in pairs, and are related to each other by a specific algorithm.

• Public key (PK): used to encrypt or verify signatures

• Private key (SK): used to decrypt and sign

• Encryption and decryption are inverse operations

• Secrecy: ciphertext reveals nothing about the plaintext

• computationally hard to decrypt in polynomial time without key

Diffie-Helman Key Exchange

Fix: Need to authenticate messages

Computational complexity for integer
problems
• Integer multiplication is efficient to compute

• There is no known polynomial-time algorithm for general purpose
factoring.

• Efficient factoring algorithms for many types of integers. Easy to find
small factors of random integers.

• Modular exponentiation is efficient to compute

• Modular inverses are efficient to compute

Textbook RSA Encryption
Public Key pk
N = pq modulus
e encryption exponent

Secret key sk
p, q primes
d decryption exponent
d = e-1 mod (p-1)(q-1) = e-1 mod 𝛷(N)

pk = (N, e)

c = EncPK(m) = me mod N
d = DecSK(c) = cd mod N

RSA Security

• Best algorithm to break RSA: Factor N and compute d

• Factoring is not efficient in general

• Current key size recommendations: N >= 2048 bits

• Do not implement this yourself. Factoring is hard only for some
integers, and textbook RSA is insecure.

