
CS 88: Security and Privacy
14: Authentication

03-19-2023
slides courtesy Christo Wilson, Vitaly Shmatikov

Authentication
• Authentication is the process of verifying an actor’s identity

• Critical for security of systems
• Permissions, capabilities, and access control are all contingent upon

knowing the identity of the actor

• Typically parameterized as a username and a secret
• The secret attempts to limit unauthorized access

• Desirable properties of secrets include being unforgeable,
unguessable, and revocable

Types of Secrets
• Actors provide their secret to log-in to a system
• Three classes of secrets:

1. Something you know
• Example: a password

2. Something you are
• Examples: fingerprint, voice scan, iris scan

3. Somewhere you are
• IP address, geolocation

4. Something you have
• Examples: a smart card or smart phone, 2FA

Today’s Topics
• Password Storage

• How should you securely store password to prevent cracking?
• Are there ways to help detect password breaches?

• Password Cracking
• Basic attacks: brute forcing and dictionary
• Hash chains
• Rainbow tables

• Local and Distributed Authentication Systems
• Unix/Linux PAM system
• NIS
• Needham-Schroeder
• Kerberos

Password Storage
Hashing and Salting

Key Stretching and Work Factor

Honeywords

Attacker Goals and Threat Model
• Assume we have a system storing usernames and passwords
• The attacker has access to the password database/file
• Our goal: even if the database is stolen, attacker should learn as little

as possible about the passwords.

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

Cracked Passwords

Database

I want to login to
those user accounts!

Checking Passwords
• System must validate passwords provided by users
• Thus, passwords must be stored somewhere
• Basic storage: plain text

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
• Linux: /etc/shadow
• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
• The attacker can now log-in as any user, including root/administrator

• Passwords should never be stored in plain text

Hashed Passwords
• Key idea: store hashed versions of passwords

• Use one-way cryptographic hash functions
• Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

• Cryptographic hash function transform input data into
scrambled output data
• Deterministic: hash(A) = hash(A)
• High entropy:

• MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
• Example: 221 tries for md5

Hashed Password Example

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Discussion Question: Are hashed password
secure from cracking?

A. Yes (discuss why/under what circumstances)
B. No (discuss why/under what circumstances)

Password Usability

Discussion Question: Hardening Password
Hashes
• Key problem: cryptographic hashes are deterministic
• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
• This enables attackers to build lists of hashes

• What might we do to make the passwords we store be
“unique”?
• HINT: analogous problem to symmetric key encryption and block

ciphers

Attacking Salted Passwords

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X

hash(‘0X’ + word)
cbw XXXXsandi YYYY

Breaking Hashed Passwords
• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

• Problem: it is now possible to compute hashes very quickly
• GPU computing: hundreds of small CPU cores
• nVidia GeForce GTX Titan Z: 5,760 cores
• GPUs can be rented from the cloud very cheaply

• $0.2 per hour (2024 prices)

Examples of Hashing Speed
• A modern x86 server can hash all possible 6 character long

passwords in 3.5 hours (assuming md5 hashing)
• Upper and lowercase letters, numbers, symbols
• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes

• Most users use (slightly permuted) dictionary words, no symbols
• Predictability makes cracking much faster
• Lowercase + numbers à (26+10)6 = 2 billion combinations
• less than a minute!

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast
• Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times
• Known as key stretching
• Example: crypt used 25 rounds of DES

• New solution: use hash functions that are designed to be slow
• Examples: bcrypt, PBKDF2, scrypt
• These algorithms include a work factor that increases the time

complexity of the calculation
• scrypt also requires a large amount of memory to compute, further

complicating brute-force attacks (CPU + memory bottlenecked)

bcrypt Example
• Python example; install the bcrypt package

[cbw@localhost ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

Discussion Question: Dealing With Breaches

• Suppose you build an extremely secure password storage system
• All passwords are salted and hashed by a high-work factor function

• Is it still possible for a dedicated attacker to steal and crack
passwords?

A. Yes
B. No
C. Maybe (be prepared to explain each choice J)

Password Storage Summary
1. Never store passwords in plain text
2. Always salt and hash passwords before storing them
3. Use hash functions with a high work factor

• These rules apply to any system that needs to authenticate users
• Operating systems, websites, etc.

Password Recovery and
Reset

Password Reuse
• People have difficulty remembering >4 passwords
• Thus, people tend to reuse passwords across services
• What happens if any one of these services is compromised?

• Service-specific passwords are a beneficial form of
compartmentalization
• Limits the damage when one service is inevitably breaches

• Some service providers now check for password reuse
• Forbid users from selecting passwords that have appeared in leaks

Password Recovery/Reset
• Problem: hashed passwords cannot be recovered (hopefully)

“Hi… I forgot my password. Can
you email me a copy? Kthxbye”

• This is why systems typically implement password reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset

Knowledge-based Rest

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

• Experts recommend that services not use KBA
• When asked, users should generate random answers to these questions

HealthCare.gov

Federal:
 What is a relative's telephone number that is not your own?
 Type a significant date in your life?
 What is the name of the manager at your first job?
Individual states:
 What is your youngest child's birth weight?
 What color was your first bicycle?
 If you needed a new first name, what would it be?
 What band poster did you have on your wall in high school?
 How many bones have you broken?

Account-based Reset

• Idea: authenticate a user by sending a code to their contact address
• Typically e-mail address or phone number

• Security rests on the assumption that the person’s contact address is
also secure
• E-mail account takeover
• SIM hijacking

Challenges of Password Reset

• Password reset mechanisms are often targeted and are quite
vulnerable
• Best practice: implement a layered mechanism
• Knowledge-based
• Secondary account
• Second factor authentication: biometric or tokens

• Warning: more secure = less usable
• Password loss is common, people will be frustrated by onerous reset

mechanisms

Choosing Passwords
Bad Algorithms

Better Heuristics

Password Reuse

Mental Algorithms

Years of security advice have trained people to generate “secure”
passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

1. Pick a word
2. Replace some of the letters with symbols (a à @, s à $, etc.)
3. Maybe capitalize the first or last letter

Human Generated Passwords

Password Entropy (bits) Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birth year, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

Modern attackers are sophisticated
• No need for brute force cracking!
• Use dictionaries containing common words and passwords from prior leaks
• Apply common “mental” permutations

Password Requirements
• comp n and basic n: use at least n

characters

• k word n: combine at least k words
using at least n characters

• d class n: use at least d character
types (upper, lower, digit, symbol)
with at least n characters

Plot from Shay et al.
https://www.blaseur.com/papers/tissec_1026.pdf

Better Heuristics

Notice that in 𝑆 = 	𝐿	 ∗ 𝑙𝑜𝑔!𝑁, length matters
more than symbol types
• Choose longer passwords (16+ characters)
• Don’t worry about uppercase, digits, or symbols

Use mnemonics
• Choose a sentence or phrase
• Reduce it to the first letter of each word
• Insert random uppercase, digits, and symbols

I double dare you, say “what” one more time
i2Dy,s”w”omt

Password Quality
𝑆 = 	 𝑙𝑜𝑔!	𝑁" à 𝐿 = #

$%&!	(

• How do we measure password quality? Entropy
• N – the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
• L – the length of the password
• S – the strength of the password, in bits

• Formula tells you length L needed to achieve a desired strength S…
• … for randomly generated passwords

• Is this a realistic measure in practice?

The Strength of Random Passwords
𝑆 = 	𝐿	 ∗ 𝑙𝑜𝑔!𝑁

0

25

50

75

100

125

150

175

200

0 5 10 15 20 25 30 35

St
re

ng
th

 (B
its

)

Password Length (Characters)

26+26+10 Characters

26+26 Characters

26 Characters

Very
Weak

Very
Strong

Password Cracking

Password Theory

Hash Chains

Rainbow Tables

Attacker Goals and Threat Model
Assume we have a system storing usernames and passwords
The attacker has access to the password database/file

User H(PW)

cbw iuafNas

sandi 23asZR

amislove 9xgGw/

User Password

cbw p4ssW0rd

sandi puppies

amislove 3spr3ss0

Cracked Passwords

Database

I want to login to
those user accounts!

Basic Password Cracking
Problem: humans are terrible at generating/remembering random
strings
Passwords are often weak enough to be brute-forced
• Naïve way: systematically try all possible passwords
• Slightly smarter way: take into account non-uniform distribution of characters

Dictionary attacks are also highly effective
• Select a baseline wordlist/dictionary full of likely passwords

• Today, the best wordlists come from lists of breached passwords

• Rule-guided word mangling to look for slight variations
• E.g. password à Password à p4ssword à passw0rd à p4ssw0rd à password1 à etc.

Many password cracking tools exist (e.g. John the Ripper, hashcat)

“Deep Crack”: The Electronic Frontier Foundation DES Cracker

• DES uses a 56-bit key
• $250K in 1998, capable of brute-

forcing DES keys in 56 hours
• Uses 1856 custom ASIC chips
• Similar attacks have been

demonstrated against MD5, SHA1

• Modern equivalent?
• Bitcoin mining ASICs

Speeding Up Brute-Force Cracking

Brute force attacks are slow because hashing is CPU intensive
• Especially if a strong function (SHA512, bcrypt) is used

Idea: why not pre-compute and store all hashes?
• You would only need to pay the CPU cost once…
• … for a given salt

Given a hash function H, a target hash h, and password space P, goal is
to recover 𝑝 ∈ 𝑃 such that 𝐻 𝑝 = ℎ
Problem: naïve approach requires Θ(|P|n) bits, where n is the space of
the output of H

Hash Chains
Hash chains enable time-space efficient reversal of hash functions

Key idea: pre-compute chains of passwords of length k…
• … but only store the start and end of each chain
• Larger k à fewer chains to store, more CPU cost to rebuild chains
• Small k à more chains to store, less CPU cost to rebuild chains

Building chains require H, as well as a reduction R : H ↦ P
• Begin by selecting some initial set of password 𝑃! ⊂ 𝑃
• For each 𝑝′ ∈ 𝑃’, apply 𝐻 𝑝! = ℎ!, 𝑅 ℎ! = 𝑝!! for k iterations
• Only store 𝑝′ and 𝑝′"

To recover hash h, apply R and H until the end of a chain is found
• Rebuild the chain using 𝑝′ and 𝑝′"

• H(p) = h may be within the chain

Uncompressed Hash Chain Example

p' H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’ R(h’’’) = p*
abcde \\WPNP_ vlsfqp _QOZLR eusrqv CMRQ5X cjldar
passw VZDGEF gfnxsk ZLGEKV yookol EBOTHT zvxscs
12345 SM-QK\9 sawtzg RHKP_D gvmdwm BYE4LB wjizbn
secrt OKFTaY btweoz WA15HK ttgovl Q_4\6ZB eivlqc

K = 3

Only these two columns
get stored on disk

Link 1 Link 2 Link 3

Hash Chain Example
p' p*
abcde cjldar
passw zvxscs
12345 wjizbn
secrt eivlqc

p H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’
sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

p' H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’ R(h’’’) = p*
12345 SM-QK\9 sawtzg RHKP_D wjizbn

• Size of the table is dramatically
reduced…
• … but some computation is necessary

once a match is found

Problems with Hash Chains

Hash chains are prone to collisions
• Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is more likely)
• Causes the chains to merge or overlap

Problems caused by collisions
• Wasted space in the file, since the chains cover the same password space
• False positives: a chain may not include the password even if the end matches

Proper choice of R() is critical
• Goal is to cover likely password space, not entire password space
• R cannot be collision resistant (like H) since it has to map into likely plaintexts
• Difficult to select R under this criterion

Rainbow Tables

Rainbow tables improve on hash chains by reducing the likelihood of
collisions
Key idea: instead of using a single reduction R, use a family of
reductions {R1, R2, … , Rk}
• Usage of H is the same as for hash chains
• A collisions can only occur between two chains if it happens at the same

position (e.g. Ri in both chains)

Final Thoughts on Rainbow Tables

Caveats
• Tables must be built for each hash function and character set
• Salting and key stretching defeat rainbow tables

Rainbow tables are effective in some cases, e.g. MD5 and NTLM
• Precomputed tables can be bought or downloaded for free

Password Management

Password Reuse

People have difficulty remembering >4 passwords
• Thus, people tend to reuse passwords across services
• What happens if any one of these services is compromised?

Service-specific passwords are a beneficial form of
compartmentalization
• Limits the damage when one service is inevitably breaches

Use a password manager
Some service providers now check for password reuse
• Forbid users from selecting passwords that have appeared in leaks

Biometric Two Factor
Authentication

Biometrics

SMS

Authentication Codes

Smartcards & Hardware Tokens

Types of Secrets
Actors provide their secret to log-in to a system
Three classes of secrets:

1. Something you know
• Example: a password

2. Something you are
• Examples: fingerprint, voice scan, iris scan

3. Something you have
• Examples: a smart card or smart phone

Biometrics

ancient Greek: bios ="life", metron ="measure“
Physical features
• Fingerprints
• Face recognition
• Retinal and iris scans
• Hand geometry

Behavioral characteristics
• Handwriting recognition
• Voice recognition
• Typing cadence
• Gait

Biometric Authentication

• Nothing to remember
• Passive
• Nothing to type, no devices to carry around

• Can’t share (usually)
• Can be fairly unique
• … if measurements are sufficiently accurate

Identification vs. Authentication

• Goal: associate an identity with an event
• Example: a fingerprint at a crime scene
• Key question: given a particular biometric reading, does there exist another

person who has the same value of this biometric?

• Goal: verify a claimed identity
• Example: fingerprint scanner to enter a building
• Key question: do there exist any two persons who have the same value of this

biometric?
• Birthday paradox!

Problems with Biometrics
• Private, but not secret
• Biometric passports, fingerprints and DNA on objects…

• Even random-looking biometrics may not be sufficiently
unique for authentication
• Birthday paradox!

• Potentially forgeable
• Revocation is difficult or impossible

Forging Handwriting
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained
on handwriting samples

Biometric Error Rates (Benign)

• “Fraud rate” vs. “insult rate”
• Fraud = system accepts a forgery (false accept)
• Insult = system rejects valid user (false reject)

• Increasing acceptance threshold increases fraud rate,
decreases insult rate
• For biometrics, U.K. banks set target fraud rate of 1%,

insult rate of 0.01% [Ross Anderson]

• Common signature recognition systems achieve equal error
rates around 1% - not good enough!

Biometrics

• Face recognition (by a computer algorithm)
• Error rates up to 20%, given reasonable variations in lighting,

viewpoint and expression

• Fingerprints
• Traditional method for identification
• 1911: first US conviction on fingerprint evidence
• U.K. traditionally requires 16-point match

• Probability of a false match is 1 in 10 billion
• No successful challenges until 2000

• Fingerprint damage impairs recognition
• Ross Anderson’s scar crashes FBI scanner

Biometrics

• Iris scanning
• Irises are very random, but stable through life

• Different between the two eyes of the same individual
• 256-byte iris code based on concentric rings between the pupil and

the outside of the iris
• Equal error rate better than 1 in a million

• Hand geometry
• Used in nuclear premises entry control, INSPASS (discontinued in

2002)

• Voice, ear shape, vein pattern, face temperature

Biometrics

Identifies wearer
by his/her unique
heartbeat pattern

Biometrics

Fingerprints

Ubiquitous on modern smartphones, some laptops
Secure?
• May be subpoenaed by law enforcement
• Relatively easy to compromise

1. Pick up a latent fingerprint (e.g. off a glass) using tape or
glue

2. Photograph and enhance the fingerprint
3. Etch the print into gelatin backed by a conductor
4. Profit ;)

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Facial Recognition

Popularized by FaceID on the iPhone X
Secure?
• It depends

Vulnerable to law enforcement requests
Using 2D images?
• Not secure
• Trivial to break with a photo of the target’s face

Using 2D images + 3D depth maps?
• More secure, but not perfect
• Can be broken by crafting a lifelike mask of the target

Voice Recognition

Secure?
• Very much depends on the implementation

Some systems ask you to record a static phrase
• E.g. say “unlock” to unlock
• This is wildly insecure

• Attacker can record and replay your voice

Others ask you to train a model of your voice
• Train the system by speaking several sentences
• To authenticate, speak several randomly chosen words
• Not vulnerable to trivial replay attacks, but still vulnerable

• Given enough samples of your voice, an attacker can train a synthetic voice AI that
sounds just like you

Fundamental Issue With Biometrics

Biometrics are immutable
• You are the password, and you can’t change
• Unless you plan on undergoing plastic surgery?

Once compromised, there is no reset
• Passwords and tokens can be changed

Example: the Office of Personnel Management (OPM) breach
• US gov agency responsible for background checks
• Had fingerprint records of all people with security clearance
• Breached by China in 2015, all records stolen :(

slide 80

Play-Doh Fingers

• Alternative to gelatin
• Play-Doh fingers fool 90% of

fingerprint scanners
• Clarkson University study

• Suggested perspiration
measurement to test
“liveness” of the finger

[Schuckers]

Token-based Two Factor
Authentication

Types of Secrets
Actors provide their secret to log-in to a system
Three classes of secrets:

1. Something you know
• Example: a password

2. Something you are
• Examples: fingerprint, voice scan, iris scan

3. Something you have
• Examples: a smart card or smart phone

82

Something You Have

Two-factor authentication has become more commonplace
Possible second factors:
• SMS passcodes
• Time-based one time passwords
• Hardware tokens

SMS Two Factor

Relies on your phone number as the second factor
• Key assumption: only your phone should receive SMS

sent to your number

SMS two factor is deprecated. Why?
Social engineering the phone company

1. Call and pretend to be the victim
2. Say “I got a new SIM, please activate it”
3. If successful, phone calls and SMS are now sent to your

SIM in your phone, instead of the victim

Not hypothetical: successfully used against many
victims

One Time Passwords

Generate ephemeral passcodes that
change over time
To login, supply normal password and
the current one time password
Relies on a shared secret between your
mobile device and the service provider

• Shared secret allows both parties to
know the current one time password

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes
every few
minutes

Time-based One-time Password Algorithm

T0 = <the beginning of time, typically Thursday, 1 January 1970 UTC>
TI = <length of time the password should be valid>
K = <shared secret key>
d = <the desired number of digits in the password>
TC = floor((unixtime(now) − unixtime(T0)) / TI),
TOTP = HMAC(K, TC) % 10d

Specially formatted
SHA1-based signature

Given K, this algorithm can
be run on your phone and by

the service provider

Secret Sharing for TOTP

Hardware Two Factor

Special hardware designed to hold
cryptographic keys
Physically resistant to key extraction
attacks
• E.g. scanning tunneling electron

microscopes
Uses:
• 2nd factor for OS log-on
• 2nd factor for some online services
• 2nd factor for password manager
• Storage of PGP and SSH keys

Universal 2nd Factor (U2F)

Supported by Chrome, Opera, and Firefox

Works with Google, Dropbox, Facebook,
Github, Gitlab, etc.

Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose your

primary key ;)

Authentication in Linux
Unix, PAM, and crypt

Network Information Service (NIS, aka Yellow Pages)

Needham-Schroeder and Kerberos

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?

Authentication in Unix/Linux

• Users authenticate with the system by interacting with login
• Prompts for username and password
• Credentials checked against locally stored credentials

• By default, password policies specified in a centralized, modular way
• On Linux, using Pluggable Authentication Modules (PAM)
• Authorizes users, as well as environment, shell, prints MOTD, etc.

Example PAM Configuration
cat /etc/pam.d/system-auth
#%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try_first_pass nullok sha512 shadow
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

• Use SHA512 as the hash function
• Use /etc/shadow for storage

Unix Passwords

• Traditional method: crypt
• First eight bytes of password used as key (additional bytes are ignored)
• 12-bit salt
• 25 iterations of DES on a zeroed vector

• Modern version of crypt are more extensible
• Full password used
• Up to 16 bytes of salt
• Support for additional hash functions like MD5, SHA256, and SHA512
• Key lengthening: defaults to 5000 iterations, up to 108 – 1

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Turns out, world-readable hashes are Bad Idea
• Hashes now located in /etc/shadow
• Also includes account metadata like expiration
• Only visible to root

Password Storage on Linux

96

username:password:last:may:must:warn:expire:disable:reserved

cbw:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
amislove:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 = SHA512

Distributed Authentication

Distributed Authentication

• Early on, people recognized the need for authentication in distributed
environments
• Example: university lab with many workstations
• Example: file server that accepts remote connections

• Synchronizing and managing password files on each machine is not
scalable
• Ideally, you want a centralized repository that stores policy and credentials

The Yellow Pages

• Network Information Service (NIS), a.k.a. the Yellow Pages
• Developed by Sun to distribute network configurations
• Central directory for users, hostnames, email aliases, etc.
• Exposed through yp* family of command line tools

• For instance, depending on /etc/nsswitch.conf, hostname lookups can
be resolved by using
• /etc/hosts
• DNS
• NIS

• Superseded by NIS+, LDAP

NIS Password Hashes

[cbw@workstation ~] ypcat passwd
afbjune:qSAH.evuYFHaM:14532:65104::/home/afbjune:/bin/bash
philowe:T.yUMej3XSNAM:13503:65104::/home/philowe:/bin/bash
bratus:2omkwsYXWiLDo:6312:65117::/home/bratus:/bin/tcsh
adkap:ZfHdSwSz9WhKU:9034:65118::/home/adkap:/bin/zsh
amitpoon:i3LjTqgU9gYSc:8198:65117::/home/amitpoon:/bin/tcsh
kcole:sgYtUsOtyk38k:14192:65104::/home/kcole:/bin/bash
david87:vA06wxjJEUgBE:13055:65101::/home/david87:/bin/bash
loch:6HgIQrVkcBeiw:13729:65104::/home/loch:/bin/bash
ppkk315:s6CTSAkqqr/nU:14061:65101::/home/ppkk315:/bin/bash
haynesma:JYWaQUARSqDQE:14287:65105::/home/haynesma:/bin/bash
ckubicek:jYpwYhqqvr3tA:10937:65117::/home/ckubicek:/bin/tcsh
mwalz:wPIa5Bv/tFVb2:9103:65118::/home/mwalz:/bin/tcsh
sushma:G6XNe18GpeQj.:13682:65104::/home/sushma:/bin/bash
guerin1:n0Da2TmO9MDBI:14512:65105::/home/guerin1:/bin/bash

• Crypt based password hashes
• Can easily be cracked
• Many networks still rely on insecure NIS

Distributed Authentication Revisited

• Goal: a user would like to use
some resource on the network
• File server, printer, database,

mail server, etc.

• Problem: access to resources
requires authentication
• Auth Server contains all

credential information
• You do not want to replicate the

credentials on all services

cbw

Database

Auth Server

Attacker Goals and Threat Model

• Goal: steal credentials and gain
access to protected resources
• Local attacker – may spy on

traffic
• Active attacker – may send

messages
• In some cases, may be able to

steal information from users

cbw

Database

Auth Server

I wanna access the
Database too ;)

(Bad) Distributed Auth Example

• Idea: client forwards
user/password to service,
service queries Auth Server
• Problems:
• Passwords being sent in the clear
• Attacker can observe them!
• Clearly we need encryption

• Database learns about passwords
• Additional point of compromise
• Ideally, only the user and the Auth

Server should know their password

cbw

Database

Auth Server

cbw:p4ssw0rd

Please verify
cbw:p4ssw0rd

Looks good!

cbw:p4ssw0rd

Symmetric Key Agreement among
Multiple Parties
• For a group of N parties, every pair needs to share a

different symmetric key
• What is the number of keys?
• What secure channel to use to establish the keys?

• How to establish such keys
• Symmetric Encryption - Use a central authority, a.k.a. (TTP).
• Asymmetric Encryption – PKI.

Needham-Schroeder Protocol

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

• Let Alice A and Bob B be two parties that trust server S
• KAS and KBS are shared secrets between [A, S] and [B, S]
• KAB is a negotiated session key between [A, B]
• Ni and Nj are random nonces generated by A and B

Challenge nonce forces A to acknowledge they have KAB

KAS is not sent in the clear, authenticates S and A

KBS is not sent in the clear, authenticates B

Needham-Schroeder Example

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

cbw

Database

Auth Server

cbw, db, 𝑁!

{𝑁!}Kcbw-db

{𝑁) , Kcbw-db, db, {Kcbw-db, cbw}Kdb
}Kcbw

cbw

cbw

db

db
cbw-db

cbw-db
{Kcbw-db, cbw}Kdb
{𝑁! − 1}Kcbw-db

Attacking Needham-Schroeder

• Spoof the client request
• Fail! Client key is needed to decrypt

• Spoof the Auth Server response
• Fail! Need to know the client key

• Spoof the client-server interaction
• Fail! Need to know the database key

• Replay the client-server interaction
• Fail! Need to know the session key

cbw

Database

Auth Server

cbw, db, 𝑁!

{𝑁!}Kcbw-db
cbw, db, 𝑁!{𝑁) , Kevil, db, {Kevil, cbw}Kdb

}Kcbw
{Kevil, cbw}Kdb

{Kcbw-db, cbw}Kdb

{𝑁) , Kcbw-db, db, {Kcbw-db, cbw}Kdb
}Kcbw

cbwcbw

db

db

evil cbw-db

Replay Attack

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

1) 𝑀 → 𝐵: {𝐾*+ , 𝐴},"#
2) 𝐵 → 𝑀: {𝑁-},$"
3) 𝑀 → 𝐵: {𝑁- − 1},$"

Typical, Benign Protocol Replay Attack

• Attacker must hack A to steal KAB
• So the attacker can also steal KAS

• However, what happens after A changes KAS
• Attacker can still conduct the replay attack! Only is KAB necessary!

Fixed Needham-Schroeder Protocol

1) 𝐴 → 𝑆: 𝐴, 𝐵, 𝑁)
2) 𝑆 → 𝐴: {𝑁) , 𝐾*+ , 𝐵, 𝐾*+ , 𝐴, 𝑇 ,"#},$#
3) 𝐴 → 𝐵: {𝐾*+ , 𝐴, 𝑇},"#
4) 𝐵 → 𝐴: {𝑁-},$"
5) 𝐴 → 𝐵: {𝑁- − 1},$"

• Let Alice A and Bob B be two parties that trust server S
• KAS and KBS are shared secrets between [A, S] and [B, S]
• KAB is a negotiated session key between [A, B]
• Ni and Nj are random nonces generated by A and B
• T is a timestamp chosen by S

B only accepts requests
with fresh timestamps

Kerberos

• Created as part of MIT Project Athena
• Based on Needham-Schroeder

• Provides mutual authentication over untrusted networks
• Tickets as assertions of authenticity, authorization
• Forms basis of Active Directory authentication

• Principals
• Client
• Server
• Key distribution center (KDC)
• Authentication server (AS)
• Ticket granting server (TGS)

Kerberos Example

cbw

Database

Auth Server

cbw

{T - 1}Kcbw-db

{cbw, Kcbw-tgs}Kcbw
, TGT

cbw

cbw

tgt

db

cbw-tgs

cbw-db

TGT, db, {cbw, T}Kcbw-tgs{Kcbw-db}Kdb
, {cbw, T}Kcbw-db

Ticket Granting
Server

tgt

db

TGT

{Kcbw-db}Kcbw-tgs
, {Kcbw-db}Kdb

cbw-db

Attacking Kerberos

• Don’t put all your eggs in one basket
• The Kerberos Key Distribution Server (KDS) is a central point of failure
• DoS the KDS and the network ceases to function
• Compromise the KDS leads to network-wide compromise

• Time synchronization
• Inaccurate clocks lead to protocol failures (due to timestamps)
• Solution?
• Use NTP ;)

Sources

1. Many slides courtesy of Wil Robertson: https://wkr.io

2. Honeywords, Ari Juels and Ron Rivest: http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf

• For more on generating secure passwords, and understanding people’s mental models of passwords, see the excellent
work of Blas Ur: http://www.blaseur.com/pubs.htm

https://wkr.io/
http://www.arijuels.com/wp-content/uploads/2013/09/JR13.pdf
http://www.blaseur.com/pubs.htm

