
CS 88: Security and Privacy
13: Symmetric Key Cryptography

03-07-2023
slides adapted from Dave Levine, Jonathan Katz, Kevin Du

Chosen Ciphertext Attack (CCA – Security)

• In the definition of CCA-security, the attacker can obtain the
decryption of any ciphertext of its choice (besides the challenge
ciphertext)
• Is this realistic?

• We show a scenario where:
• One bit about decrypted ciphertexts is leaked
• The scenario occurs in the real world!
• It can be exploited to learn the entire plaintext

Cipher Block Chaining (CBC) Mode
• Uses a random Initialization Vector

(IV)
• Block i depends on block i-1

Plaintext 1

Block Cipher
EncryptionK

Ciphertext 1

…

IV

Ciphertext 0

Plaintext 2

Block Cipher
EncryptionK

Ciphertext 2

Plaintext n

Block Cipher
EncryptionK

Ciphertext n

is exclusive bitwise OR
(XOR)

CBC-mode decryption

Plaintext 1

Block Cipher
DecryptionK

Ciphertext 1

…IV

Plaintext 2

Block Cipher
Decryption

Ciphertext 2

Plaintext n

Block Cipher
Decryption

Ciphertext n

input: ciphertext c,
 key k,
 initialization vector IV
m[i] = D(k, c[i]) ⨁c[i−1]

Decryption

Observation
If an attacker modifies ci-1, this causes a predictable change to mi

Plaintext 1

Block Cipher
DecryptionK

Ciphertext 1

…IV

Plaintext 2

Block Cipher
Decryption

Ciphertext 2

Plaintext n

Block Cipher
Decryption

Ciphertext n

Arbitrary-length messages?

• Message ® encoded/padded data ® ciphertext

• PKCS #5 encoding:
• Assume message is an integral number of bytes
• Let L be the block length (in bytes) of the cipher
• Let b ≥ 1 be # of bytes that need to be appended to the message to get length

a multiple of L
• 1 ≤ b ≤ L; note b ¹ 0

• Append b (encoded in 1 byte), b times
• I.e., if 3 bytes of padding are needed, append 0x030303

m m m m b b bm

Block Length L

b bytes
padding here
b = 03

Decryption?

• Use CBC-mode decryption to obtain encoded data

• Let’s say the final byte of encoded data has value b
• If b=0 or b > L, return “error”

• If final b bytes of encoded data are not all equal
to b, return “error”

• Otherwise, strip off final b bytes of the encoded data, and output what
remains as the message

AB 01 4F 21 00 7C 04 00

AB 01 4F 21 00 7C 03 03

Example (L=8)

AB 01 4F 21 00 7C 02 02

AB 01 4F 21 00 7C 02 02

Strip off final b bytes of the padded data, and output what remains as the message

Padding oracle attack!

shared key k c = Fk(m)

c’
Learns m = Fk

-1
 (c)

Error! Fk
-1

 (c’)

shared key k

Error!

Chosen Ciphertext Attack (CCA – Security)

Padding oracles

• Padding oracles are frequently present in, e.g., web applications

• Even if an error is not explicitly returned, an attacker might be able to
detect differences in timing, behavior, etc.

Main idea of the attack
• Consider a two-block ciphertext IV,

c
• Padded data = Fk-1(c) Å IV
• Goal is to learn the encoded data

• Main observation: If an attacker modifies
(only) the ith byte of IV, this causes a
predictable change (only) to the ith byte
of the padded message.

Plaintext 1

Block Cipher
DecryptionK

Ciphertext 1

IV

= Fk-1(c) Å IV

XX XX XX XX XX XX XX XX

AB 01 4F 21 00 7C 02 9E

Fk-1(c):

IV:

Å

XX XX XX XX XX XX XX XX

=
Encoded

data:

“Success” “Error”

06 06 06 06 06

0x9E Å 0x06

98

XX XX XX XX XX XX XX 98

AB 01 4F 21 00 7C 02 9E

Fk-1(c):

IV:

Å

XX XX 06 06 06 06 06 06

=
Encoded

data:

“Success!”

9F

0x98 Å 0x07

07

03

0x02 Å 0x06 Å 0x07

7D01204E

0707070707

00010241

07

XX Å 0x41 = 0x07
Þ XX = 0x41 Å 0x07

Þ plaintext byte = XX Å 0x01 = 0x47

Attack complexity?

• ≤ L tries to learn the # of padding bytes

• ≤ 28 = 256 tries to learn each plaintext byte

CCA-security: a summary

• Chosen-ciphertext attacks are a significant, real-world threat
• Modern encryption schemes are designed to be CCA-secure

• None of the schemes we have seen so far is CCA-secure!

Hash Function Properties

Hash Functions

Cryptographic hash function: maps arbitrary length inputs to a
short, fixed-length digest.

• Deterministic: H(x) is always the same
• High entropy:
• md5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• md5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• md5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant
• Locating x’ such that H(x) = H(x’) takes a long time
• Example: 221 tries for md5

Cryptographic Hash Functions

Generic hash-function Attacks

• What is the best “generic” collision attack on a hash function
 H: {0,1}* → {0,1}n ?
• If we compute H(x1), ..., H(x2n + 1), we are guaranteed to find a

collision
• Is it possible to do better?

Collisions always exist

Collision-resistant hash functions

“Birthday” attacks

• “Compute H(x1), ..., H(x2n/2)
• What is the probability of a collision?

• Related to the so-called birthday paradox
• How many people are needed to have a 50% chance that some two people

share a birthday?

N

Bins: days of the year (N=365)
Balls: k people

Bins: values in {0,1}l (N = 2l)
Balls: k hash-function computations

How many balls do we need
to have a 50% chance of a collision?

“Birthday” attacks

• Theorem: When the number of balls are O(N1/2) the probability of a
collision is » 50%
• Birthdays: 23 people suffice!
• Hash functions: O(2n/2) hash-function evaluations

• Need 2n bit output length to get security against attackers running
in time 2n
• Note: twice as long as symmetric keys (e.g., block-cipher keys or PRG seeds)

for the same security

“Birthday bound”

• The birthday bound comes up in many other cryptographic contexts

• Example: IV reuse in CTR-mode encryption
• If k messages are encrypted, what are the chances that some IV is used twice?
• Note: this is much higher than the probability that a specific IV is used again

History of hash functions
H is a collision-resistant hash function if it is “practically impossible to find collisions in H”.

• 1991: MD5
• 1995: SHA1
• 2001: SHA2 -- SHA-256 and SHA-512
• 2004: Team of Chinese researchers found collisions in MD5
• 2007: NIST competition for new SHA3 standard
• 2012: Winner of SHA3 is Keccak

The Future: SHA3
• 2007: NIST opens competition for new hash functions
• 2008: Submission deadline, 64 entries, 51 make the cut
• 2009: 14 candidates move to round 2
• 2010: 5 candidates move to round 3
• 2011: final round of public comments
• 2012: NIST selects keccak (pronounced “catch-ack”) as SHA3
• Created by Guido Bertoni, Joan Daemen, Gilles Van Assche, Michaël Peeters

