CS 88: Security and Privacy

12: Symmetric Key Cryptography

03-05-2024

slides adapted from Dave Levine, Jonathan Katz, Kevin Du
Multiple message secrecy

We are not going to formally define a notion of multiple-message secrecy
• Instead, define something stronger: **security against chosen-plaintext attacks (CPA-security)**
• *minimal notion of security an encryption scheme should satisfy*
Security against Chosen Plaintext Attack: Impossible?

It really is a problem if an attacker can tell when the same message is encrypted twice!

This attack only works if encryption is deterministic!
Random Functions

Out of all possible function mappings between X and Y we choose one uniformly at random.

- e.g. for a 2 bit string mappings between X: $\{0, 1\}^2$ and Y: $\{0, 1\}^2$
- one possible mapping that we could choose:

<table>
<thead>
<tr>
<th>x</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(x)$</td>
<td>01</td>
<td>11</td>
<td>00</td>
<td>10</td>
</tr>
</tbody>
</table>

Properties of function $F(X)$ chosen uniformly at random:

- for any given $x \in X$, the probability that $F(x) = y$ is $1/2^n$
- in our example example:
 - given $x \in X$, the probability that $F(x) = 1/2^2 = \frac{1}{4} = 0.25$
- $F(x)$ property:
 - if x changes by one bit to give x' then
 - $F(x')$ is completely independent of $F(x)$.
Random Permutations

- Variant of random function is random permutation
 - treat them equivalently for our purposes.

- E.g.: random permutation over bit strings of length 2
 Encryption: \(\{0, 1\}^2 \rightarrow \{0, 1\}^2 \)

<table>
<thead>
<tr>
<th>x</th>
<th>F(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Important Property of the Random Permutation:

A permutation is invertible (bijective) function

Given \(F(x) \) it is impossible to determine \(x \) without resorting to a brute force attack.

If \(|X| \) is very large? brute force not possible by an efficient (probabilistic polynomial time) attacker.
What we have, ideally: Random Functions

Consider the set of all permutations $F_k: X \rightarrow X$

Think of X as all 128-bit bit strings

<table>
<thead>
<tr>
<th>f_1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_{</td>
<td>X</td>
<td>}$</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

If you know k, then $F_k(x)$ is trivial to invert

If you don’t know k, then $F_k(x)$ is one-way

One-way function
What we have, ideally: Random Functions

Consider the set of all permutations $F_k: X \rightarrow X$

Think of X as all 128-bit bit strings

Shared secret: index k chosen uniformly, at random

Without knowing k, Eve learns nothing about m

k is our key!
What we have, approximately: Pseudo-Random Functions

In essence, this protocol is saying “Let’s use the ith permutation function”

Infeasible to store all permutation functions – so instead cryptographers construct pseudorandom functions
A Perfectly Secure Encryption Scheme

Regardless of any prior information the attacker has about the plaintext, the ciphertext observed by the attacker should leak no additional information about the plaintext.

Alice can only observe one ciphertext going over the network.
Computational Secrecy

Would be okay if a scheme leaked information with a tiny probability to eavesdroppers with bounded computational resources.

- **Allowing security to fail with a tiny probability** (negligible in key length n)
 - how tiny is tiny? 2^{-60}: probability of an event occurring every 100 billion years!

- **Only consider efficient attackers** (bounded in polynomial time by key length)
 - attackers that can brute-force the key space in bounded time.
 - try testing 2^{112} keys? Would take a supercomputer since Big Bang!
 - modern key space? 2^{128} or more!
BLACKBOXES

To this end, we’ll cover several “blackboxes”: what properties do they provide, and how can we responsibly put them together.

- Block ciphers
- MACs
- Hash functions
- Public key crypto
Scenarios and Goals

Confidentiality
- Keep others from reading Alice’s messages/data

Integrity
- Keep others from undetectably tampering with Alice’s messages/data

Authenticity
- Keep others from undetectably impersonating Alice (keep her to her word too!)

Block Ciphers

Alice
- Public network

Bob
- Disk
Block Ciphers

Encryption

Encryption Function: \(E: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \)

Fix the key \(K \), then, \(E_k: \{0, 1\}^n \rightarrow \{0, 1\}^n \)

- **plaintext size**: \(n \)
- **ciphertext size**: \(n \)

\(E_k \): permutation on \(n \)-bit strings.

- invertible (bijective function) given the key

Once the key is fixed: \(E(k,m) \) is indistinguishable from a function chosen uniformly at random from all possible functions between block-sized binary strings.
Once the key is fixed: $E(k,m)$ is indistinguishable from a function chosen uniformly at random from all possible functions between block-sized binary strings.

Attacker has no way of knowing which random function was chosen to permute the plaintext to the ciphertext.
Block Ciphers

DECRIPTION

Inverse mapping of the permutation is the decryption algorithm, given the key
\[D_k(E_k(M)) = M \]

without the key: best attack is a brute force exhaustive search over the entire key space!

Attacker has no way of knowing which random function was chosen to permute the plaintext to the ciphertext
Block Ciphers

Encryption

Key $K \rightarrow E \rightarrow c$

AES key sizes: 128, 192, 256

Decryption

$K \rightarrow D \rightarrow m$

Plaintext (“message”)

Same fixed block size (AES: 128 bits, 3DES: 64 bits)

Ciphertext

PROPERTY:

Small changes to the inputs cause big changes in the output

Confusion: Each bit of the ciphertext should depend on each bit of the key

Diffusion: Flipping a bit in m should flip each bit in c with $Pr = 1/2$

$\{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$
Chosen Plaintext Attack

Eve: Attacker

Bob: Challenger

repeat

M
Enc(K, M)

M₀ and M₁
Enc(K, Mᵦ)

repeat

M = M₀ In Step 2?

Enc(K, M)
Problem #1: Block Ciphers Are Deterministic

Property:

Block ciphers are deterministic
For a given m and K, $E(K,m)$ always returns the same c

An eavesdropper could determine when messages are re-sent

A Fix:

$m \oplus r$ is the same size as m
Choose random r
Send c and r

Also known as an Initialization Vector or Nonce
Initialization Vector (nonce)

Choose random r

$K \rightarrow E$

$m \oplus r$

c

Send c and r

Random: Must send r with the message
This is good if messages can be reordered

Counter: Don’t need to send r; the receiver can infer it from the message number
This is good if messages are delivered in-order
Problem #2: Block Ciphers have fixed size

Fixed block size m

If we want to encrypt a message larger than the block size (128 bits), we simply break up the message into block-size length pieces...

$$\text{m} = m_1 \, m_2 \, m_3 \, m_4 \, \ldots \, m_n$$

...and encrypt each block
Modes of Encryption: Electronic Codebook Mode (ECB)

Each block in AES 128 bits

Encryption:
inputs: plaintext: m, key: k,
ciphertext: c[i] = E(k, m[i])

Decryption:
inputs: ciphertext: c, key: k,
plaintext: m[i] = D(k, c[i])

spot the problem?
NEVER use ECB
(but over 50% of Android apps do)
Modes of Encryption: Cipher Block Chaining Mode (CBC)

Encryption
input: plaintext m, key k, initialization vector IV
$c[0] = IV$
$c[i] = E(k, m[i] \oplus c[i-1])$ for $i \geq 1$

Decryption
input: ciphertext c, key k, initialization vector IV
$m[i] = D(k, c[i]) \oplus c[i-1]$
Modes of Encryption: Cipher Block Chaining Mode (CBC)

Security

Input to the Encryption algorithm at each step is extremely likely to be different from the previous step.

Performance

Encryption: Not Parallelizable

Decryption: Parallelizable recovering \(m[i] \) does not require \(m[i-1] \). Only requires \(c[i-1] \) which is already known.
Symmetric Key Cryptography

Confidentiality
- Keep others from reading Alice’s messages/data

Integrity
- Keep others from undetectably tampering with Alice’s messages/data

Authenticity
- Keep others from undetectably impersonating Alice (keep her to her word too!)

Block Ciphers

Limitations?
- what if Eve modifies the packet in transit?
- How do we share keys?