
CS 88: Week 4: Class 8: Web Security: HTTP and Cookies
Discussion Question 1: HTTP Headers

Part A: Understanding HTTP Request-Response Headers.
HTTP is the Hypertext Transfer Protocol. The headers for an HTTP request are shown below:

There are many ways to send data over HTTP. Match the following HTTP request types, with their
corresponding syntax.

Four ways to send data to the server
1. Embedded in the URL (typically URL encoded, but not always)
2. In cookies (cookie encoded)
3. Inside a custom HTTP request header
4. In the HTTP request body

Examples
a. GET /purchase.html?user=alice&item=iPad&price=400 HTTP/1.1
b. Cookie: user=alice; item=iPad; price=400;
c. BODY of HTTP POST user=alice&item=iPad&price=400
d. My-Custom-Header: alice/iPad/400

Let’s say a website decided to use Example (C) to send the price of an iPAD to Alice. Alice want’s to buy the iPad but

thinks the price is exorbitant. Given the anatomy of a response shown below, is it possible for Alice to buy the ipad

for $0?

Part B: Same-Origin Policy: Select whether the following websites have the same origin.

The Same-origin policy has some exceptions:
● JavaScript runs with the origin of the page that loads it
● Websites can fetch and display images from other origins
● Websites can agree to allow some limited sharing

Having learnt about Same-origin policy, you are asked to provide insight into the security
vulnerabilities for the webpage cs88.com.
The webpage cs88.org embeds google.com. We know that because of the same origin policy, the
inner frame for google.com cannot interact with the outer frame for cs88.org and vice-versa. Given
this information, what happens when:

A. cs88.org fetches Javascript from Google analytics.
B. cs88.org includes <imgsrc="http://google.com/logo.jpg”> and the image has origin

http://google.com.

C. An iframe <imgsrc="http://google.com/logo.jpg> is loaded to the cs88.org webpage
and the image has origin http://google.com.

http://google.com/logo.jpg

Discussion Question 2: Cookies

Part A: Introducing state into HTTP. We said that HTTP is stateless. I.e., every time you talk to the same
server, it forgets all past interactions. List three reasons why we need state when communicating with a
server.

Part B: Detecting Cookies

How many cookies do you see on this page?

As a privacy conscious web consumer, you decide to turn on Do Not Track in your browser. Will this
ensure you are not tracked?

A. Yes (Explain why)
B. No (Explain why)

Part C: Cookie Policy: Cookie policies are a set of rules enforced by the browser
● When the browser receives a cookie from a server, should the cookie be accepted?
● When the browser makes a request to a server, should the cookie be attached?
● Cookie policy is not the same as same-origin policy

Part D: Setting Cookie Policies

Given what we just learnt, can the following attack succeed?

