
CS 88: Security and Privacy
08: Web Security: HTTP and Cookies

02-15-2024
slides adapted from Dave Levine, Vitaly Shmatikov, Christo Wilson

SQL Injection

spongebob’ or 1=1); DROP TABLE Users; #

spongebob’ or 1=1);#

Can chain together statements, and can modify existing statements

Not Just SQL!

Front end Back endUser

Forms a string
containing user
input

Executes this string
as a command or
query

Database
NoSQL storage
Javascript
eval(…)

01001 000101

Injection vulnerabilities are a generic issue!

PREVENTING
INJECTION ATTACKS Val

ida
te

all
 th

e i
npu

ts!

Mak
e s

ure
 un

saf
e i

npu
ts

can
not

cha
nge

 th
e m

ean
ing

 of
 qu

ery

Most injection attacks trick
application into interpreting data
as code

This changes the semantics of a
query or command generated by
the application

A basic web architecture

6

Client Server

Browser Web Server

Database
Private data

DB is a separate entity,
logically (and often physically)

Much of the user data is part
of the browser

7

Client Server

Browser: renders
the webpage

Web Server
hosts the web page

Database
Private data

DB is a separate en;ty,
logically (and o<en physically)

Where Does the Attacker Live?

Web server
attacker

Network
attacker

Malware
attacker

Much of the user data is part
of the browser

Web Architecture: Simplified View

Client Side Server SideProtocols

Gopher
FTP

HTTP

Document
Renderer

HTML Parser

N
etw

ork Protocols

N
etw

ork Protocols
HTML

Web Browser
Responsible for securely confining Web
content presented by visited websites

Web servers: Responsible for
securely parsing input data
PHP, Ruby, ASP, JSP

• Big trend: software as a Web-based service
• Online banking, shopping, government, bill payment, tax prep, customer

relationship management, etc.
• Cloud-hosted applications

• Application code split between client and server
• Client (Web browser): JavaScript
• Server: PHP, Ruby, Java, Perl, ASP …

• Security is rarely the main concern
• Poorly written scripts with inadequate input validation
• Inadequate protection of sensitive data

Web Applications

Top Web Vulnerabilities

• SQL injection
• Malicious data sent to a website is interpreted as code in a query to the

website’s back-end database

• XSRF (CSRF) - cross-site request forgery
• Bad website forces the user’s browser to send a request to a good website

• XSS (CSS) – cross-site scripting
• Malicious code injected into a trusted context (e.g., malicious data presented

by a trusted website interpreted as code by the user’s browser)

Overview

• The Web Model
• What components make up today’s browsers and web servers?
• How has this func=onality evolved over =me?
• What security model governs the browser?

Overview: The Web Model

• What is the web?
• What components make up today’s browsers and web servers?
• How has this functionality evolved over time?
• What security model governs the web browser?

What is the web?

•Web (World Wide Web): A collection of data and services
• Data and services are provided by web servers
• Data and services are accessed using web browsers (e.g. Chrome, Firefox)

•The web is not the Internet
• The Internet describes how data is transported between servers and

browsers

Elements of the Web

• URLs: How do we uniquely identify a piece of data on the web?

• HTTP: How do web browsers communicate with web servers?

• Data on the webpage can contain:
• HTML: A markup language for static webpages
• CSS: A style sheet language for defining the appearance of webpages
• Javascript: a programming language for running code in the web browser

Elements of the Web

• Data on the webpage can contain:
• HTML: A markup language for staUc webpages
• CSS: A style sheet language for defining the appearance of webpages
• Javascript: a programming language for running code in the web browser

What IS A Web Browser?

Web Browser: Basic Execution Model

• Each browser window or frame:
• Loads content
• Renders:

• Processes HTML and scripts to
display the page

• May involve images, subframes,
etc.

• Responds to events

• Events
• User actions: OnClick, OnMouseover
• Rendering: OnLoad, OnUnload
• Timing: setTimeout(), clearTimeout()

Generating a static webpage: HTML

HTML
<!doctype html>

<html>
<head>
 <title>Hello World</title>
</head>
 <body>
 <h1>Hello World</h1>

 <p>
 I am 12 and what is
 this?
 </p>

 </body>
</html>

HTML may embed
other resources from

the same origin

… or from other origins
(cross origin embedding)

JavaScript

• Language executed by the browser
• Scripts are embedded in Web pages

• Inline
•

• Embedded
• <script>alert('Hello');</script>

• External
• <script src="/js/main.js"></script>

•Potentially malicious website gets to execute some code on user’s machine

“Java is to JavaScript as car
is to carpet”

Event-Driven Script Execution
<script type="text/javascript">
 function whichButton(event) {
 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")
 }
}
</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Function gets executed
when some event happens

Script defines a
page-specific function

Elements of the Web

• URLs: How do we uniquely identify a piece of data on the web?

• HTTP: How do web browsers communicate with web servers?

Interacting with web servers

http://www.cs.swarthmore.edu/~chaganti/index.html

Protocol:
ftp

https
tor

Hostname/server
• translated to an IP address

by DNS

Path to the resource

index.html is staUc content
 i.e., a fixed file returned by the server

Interacting with web servers

http://www.cs.swarthmore.edu/~chaganti/index.html

Protocol:
ftp

https
tor

Hostname/server
translated to an IP address by DNS

Path to the resource
index.html is static content
 i.e., a fixed file returned by the
server

http://facebook.com/delete.php

Path to the resource

delete.php is dynamic content
 i.e., a server generates the content on the fly

Interacting with web servers: dynamic content

http://facebook.com/delete.php Path to the resource

http://facebook.com/delete.php?f=eva264&w=16

arguments

server generates the content on the fly

http://facebook.com/delete.php?f

URL Escaping

• URLs are designed to contain printable, human-readable characters (ASCII)
• include non-printable characters in the URL?

• URLs have special characters that have assigned meaning (?, #, /)

http://facebook.com/delete.php?f=eva264&w=16

http://facebook.com/delete.php?f

URL Escaping

• What if we want to use a special character in the URL?
• Solution: URL encoding
• Notation: Percent sign (%) followed by the hexadecimal value of the character
• Example: %20 = ' ' (spacebar) %35 = '#' (hash sign)

 %50 = '2' (printable characters can be encoded too!)

• Security issues: makes scanning for malicious URLs harder
• Suppose you want to block all requests to the path /etc/passwd
• What if an attacker makes a request to

%2F%65%74%63%2F%70%61%73%73%77%64?

http://facebook.com/delete.php?f=eva264&w=16

http://facebook.com/delete.php?f

HTTP and the Web
First, a review…
• web page consists of objects
• object can be HTML file, JPEG image, Java applet, audio file,…
• web page consists of base HTML-file which includes several referenced objects
• each object is addressable by a URL, e.g.,

http://www.cs.swarthmore.edu/~chaganti/index.html

Protocol:
ftp

https
tor

Hostname/server
• translated to an IP address

by DNS

Path to the resource

HTTP: Hypertext transfer protocol

§ client/server model

• client: browser that
requests, receives, (using
HTTP protocol) and
“displays” Web objects

• server: Web server sends
(using HTTP protocol)
objects in response to
requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

host name path name

HTTP Overview

2. Browser establishes connection with server.
Looks up “some.host.name.tld”
connects

HTTP Overview

3. Browser requests the corresponding data.
GET /directory/name/file.ext HTTP/1.0
Host: some.host.name.tld
[other optional fields, for example:]
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
Accept-language: en

HTTP Overview

4. Server responds with the requested data.
HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

HTTP Request Header

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

HTTP Response Header

Example
GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: text/html
Accept-Ranges: bytes
ETag: "316912886"
Last-Modified: Wed, 04 Jan 2017 17:47:31 GMT
Content-Length: 1062
Date: Wed, 05 Sep 2018 17:27:34 GMT
Server: lighttpd/1.4.35

Response
headers

Response Body

Example

GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

<html><head><title>Demo Server</title></head>
<body>
.....
</body>
</html>

Response Headers

Response
Body

39

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

method path version

headers

body
(empty)

40

HTTP Response
HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543
Set-Cookie: aldkfj2314  

<html>Some data... announcement! ... </html>

headers

body

status
code

HTTP Methods
GET: Get the resource at the specified URL (does not accept message body)

POST: Create new resource at URL with payload

PUT: Replace target resource with request payload

PATCH: Update part of the resource

DELETE: Delete the specified URL

HTTP Methods
Not all methods are created equal — some have different security protections
GETs should not change server state; in practice, some servers do perform side
effects
 - Old browsers don’t support PUT, PATCH, and DELETE
 - Most requests with a side affect are POSTs today
 - Real method hidden in a header or request body

🙅 Never do…
GET
http://bank.com/transfer?fromAcct=X&toAcct=Y&amount=1000

Goals of Web Security: Safely Browse the Web

slide 43

• Safe to visit an evil website
• sandboxing Javascript
• privilege separation

• Safe to visit two pages
 at the same time,

• same-origin policy

• Safe delegation

A.com

A.com

B.com

A.com
B.com

Web Security Model

Subjects
“Origins” — a unique scheme://domain:port

Objects
DOM tree, DOM storage, cookies, javascript namespace, HW permission

Same Origin Policy (SOP)
Goal: Isolate content of different origins
 - Confidentiality: script on evil.com should not be able to read bank.ch
 - Integrity: evil.com should not be able to modify the content of bank.ch

Same Origin Policy

slide 45

A.com B.com

A.com
B.com

• rule that prevents one website from tampering with other
unrelated websites.

• enforced by browser

● Every webpage has an origin defined by its URL with three parts:
○ Protocol: The protocol in the URL
○ Domain: The domain in the URL’s locaUon
○ Port: The port in the URL’s locaUon

■ If no port is specified, the default is 80 for HTTP and 443 for HTTPS

Same-Origin Policy

https://cs.swarthmore.edu:443/assets/lock.PNG

http://cs.swarthmore.edu/assets/images/404.png

80 (default port)

Bounding Origins — Windows
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…

 - read or write content from bank.com tab

 - read or write bank.com's cookies
 - detect that the other tab has bank.com loaded

(i)Frames

Beyond loading individual resources,
websites can also load other websites
within their window
• Frame: rigid visible division

• iFrame: floating inline frame
Allows delegating screen area to
content from another source (e.g., ad)

https://a.com

b.com

c.com
a.com

d.com

Bounding Origins — Frames
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

attacker.com cannot…

 - read content from bank.com frame

 - access bank.com's cookies
 - detect that has bank.com loaded

http://example.comattacker.com

bank.com bank.com

Same-Origin Policy
● Two webpages have the same origin if and only if the protocol, domain, and port of the URL all match exactly:

string matching:
● The protocol, domain, and port strings must be equal

First domain Second domain Same origin?

http://cs88.swat.org https://cs88.swat.org

http://cs88.swat.org http://swat.org

http://cs88.swat.org

[:80]

http://cs88.swat.org:8000

Same-Origin Policy: Two websites with different origins can’t
interact with each other.
Example: If cs88.org embeds google.com, the inner frame cannot interact with the
outer frame, and the outer frame cannot interact with the inner-frame
So what happens when…
1. JavaScript runs with the origin of the page that loads it? E.g., cs88.org fetches

Javascript from Google analytics.
2. Websites fetch and display images from other origins? E.g. if we include <img

src="http://google.com/logo.jpg> on http://cs88.org, the image has origin
http://google.com.

3. We load frames such as <iframe src="http://google.com"></iframe> on
cs88.org?

52

Same-Origin Policy
● Two websites with different origins cannot interact with each other

○ Example: If cs88.org embeds google.com, the inner frame cannot interact with the outer frame, and the
outer frame cannot interact with the inner-frame

● Exception: JavaScript runs with the origin of the page that loads it
○ Example: If cs88.org fetches JavaScript from google.com, the JavaScript has the origin of cs88.org
○ Intuition: cs88.org has “copy-pasted” JavaScript onto its webpage

● Exception: Websites can fetch and display images from other origins
○ However, the website only knows about the image’s size and dimensions (cannot actually manipulate the

image)
● Exception: Websites can agree to allow some limited sharing

○ Cross-origin resource sharing (CORS)
○ The postMessage function in JavaScript

Same-Origin Policy: Summary

● Rule enforced by the browser: Two websites with different origins
cannot interact with each other

● Two webpages have the same origin if and only if the protocol, domain,
and port of the URL all match exactly (string matching)

● Excepjons
○ JavaScript runs with the origin of the page that loads it
○ Websites can fetch and display images from other origins
○ Websites can agree to allow some limited sharing

State(less)

(XKCD #869, “Server Attention Span”)

State(less)

• Original web: simple document retrieval

• Maintain State? Server is not required to keep state between
connections

...often it might want to though

• Authentication: Client is not required to identify itself
• server might refuse to talk otherwise though

Browser Cookie Management

• Cookie Same-origin ownership
• Once a cookie is saved on your computer, only the Web site that created the cookie

can read it.

• Variations
• Temporary cookies

• Stored until you quit your browser
• Persistent cookies

• Remain until deleted or expire
• Third-party cookies

• Originates on or sent to a web site other than the one that provided the current
page

CS526 Topic 12: Web Security (2) 60

Third-party cookies

• Get a page from merchant.com
• Contains
• Image fetched from DoubleClick.com

• DoubleClick knows IP address and page you were looking at

• DoubleClick sends back a suitable advertisement
• Stores a cookie that identifies "you" at DoubleClick

• Next time you get page with a doubleclick.com image
• Your DoubleClick cookie is sent back to DoubleClick
• DoubleClick could maintain the set of sites you viewed
• Send back targeted advertising (and a new cookie)

• Cooperating sites
• Can pass information to DoubleClick in URL, …

CS526 Topic 12: Web Security (2) 61

Cookie issues

• Cookies maintain record of your browsing habits
• Cookie stores information as set of name/value pairs
• May include any information a web site knows about you
• Sites track your activity from multiple visits to site

• Sites can share this information (e.g., DoubleClick)
• Browser attacks could invade your “privacy”

CS526 Topic 12: Web Security (2) 62

Browser Fingerprinting

• Browser sends HTTP head information, which includes
• User agent: e.g., “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36”
• HTTP header: e.g., “text/html, */* gzip,deflate en-US,en;q=0.8”
• Javascript can collect font information, installed browser-plugin information
• Using canvas, e.g., how to render emoji
• Can achieve high entropy.
• Can be used to track users/browsers.

• https://panopticlick.eff.org/

CS526 Topic 12: Web Security (2) 63

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual hUp request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entryusual http response

set-cookie: 1678
ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

Slide 71

slide 72

What Are Cookies Used For?

• Authentication
• The cookie proves to the website that the client previously

authenticated correctly

• Personalization
• Helps the website recognize the user from a previous visit

• Tracking
• Follow the user from site to site;
• Read about iPads on CNN and see ads on Amazon 😱
• How can an advertiser (A) know what you did on another site (S)?

HTTP Request/Responses with Cookies

Cookies and Privacy

Cookies permit sites to learn a lot about you

 supply name and e-mail to sites (and more!)

 third-party cookies (ad networks) follow you across multiple sites.

Slide 74

Why use cookies?

Why use cookies?

Why use cookies?

Why use cookies?

Cookie tracking

Cookie tracking

Cookie tracking

Cookie tracking

Cookie tracking

Cookie tracking

Cookies and Privacy
Cookies permit sites to learn a lot about you

You could turn them off ...but good luck doing anything on the
internet!

Slide 85

Cookie Policy

Cookie Policy

● Cookie policy: A set of rules enforced by the browser
○ When the browser receives a cookie from a server, should the

cookie be accepted?
○ When the browser makes a request to a server, should the cookie be

attached?
● Cookie policy is not the same as same-origin policy

Login Session

GET /loginform HTTP/1.1
cookies: []

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

 Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

A. Yes B. No C. Maybe D. Something Else

google.analytics

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com
<img src=“/img/user.jpg”

bank.com/

attacker.com

GET /img/user.jpg

GET /img/user.jpg

Aside: Domain Hierarchy

● Domains
○ Located after the double slashes, but before the next single slash
○ Written as several phrases separated by dots

● Domains can be sorted into a hierarchy
○ The hierarchy is separated by dots

95

. (root)

.edu .org .com

google.compiazza.comcs88.orgmit.eduswarthmore.edu

Aside: Domain Hierarchy

96

. (root)

.edu

swarthmore.edu

cs.swarthmore.edu cs.swarthmore.edu is a
subdomain of swarthmore.edu

.edu is a top-level domain (TLD),
because it is directly below the root

of the tree.

swarthmore.edu is a subdomain
of edu

● When the browser receives a cookie from a server, should the cookie be accepted?
● Server with domain X can set a cookie with domain attribute Y if

○ The domain attribute is a domain suffix of the server’s domain
■ X ends in Y
■ X is below or equal to Y on the hierarchy
■ X is more specific or equal to Y

○ The domain attribute Y is not a top-level domain (TLD)
○ No restrictions for the Path attribute (the browser will accept any path)

● Examples:
○ mail.google.com can set cookies for Domain=google.com
○ google.com can set cookies for Domain=google.com
○ google.com cannot set cookies for Domain=com, because com is a top-level domain

Cookie Policy: Setting Cookies

97

Cookie Policy: Sending Cookies

● When the browser makes a request to a server, should the cookie be attached?
● The browser sends the cookie if both of these are true:

○ The domain attribute is a domain suffix of the server’s domain
○ The path attribute is a prefix of the server’s path

Cookie Policy: Sending Cookies

https://cs88.swat.edu/cryptoverse/oneshots/subway.html

cs88.swat.edu/cryptoverse
(cookie domain) (cookie path)

(server URL)

Quick method to check cookie sending:
Concatenate the cookie domain and path. Line

it up below the requested URL at the first
single slash.

If the domains and paths all match,
then the cookie is sent.

✅

Cookie Policy: Sending Cookies

https://cs88.swat.org/cryptoverse/oneshots/subway.html

cs88.swat.org/xorcist

(server URL)

Quick method to check cookie sending:
Concatenate the cookie domain and path. Line

it up below the requested URL at the first
single slash.

If the domain or path doesn’t match,
then the cookie is not sent.

(cookie domain) (cookie path)
❌

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com

login.site.com

login.site.com/my/home

site.com/account

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL pathConcatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

 Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has iframes. Can google analytics see Alice’s session
cookie on bank.com?

google.analytics

Cookies and web authentication

• An extremely common use of cookies is to track users who have already
authenticated

• If the user already visited http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session cookie” with the
logged-in user’s info

• Subsequent requests (GET and POST) include the cookie in the request headers
and/or as one of the fields: http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to the same browser that
authenticated Alice earlier.”

Aside: Trust in Web Advertising

• Advertising, by definition, is ceding control of Web content to another party
• Webmasters must trust advertisers not to show malicious content
• Sub-syndication allows advertisers to rent out their advertising space to other

advertisers
• Companies like Doubleclick have massive ad trading desks, also real-time

auctions, exchanges, etc.
• Trust is not transitive!

• Webmaster may trust his advertisers, but this does not mean he should trust
those trusted by his advertisers

Aside: Example of an Advertising Exploit

• Video sharing site includes a banner from a large US adverUsing company as a single line
of JavaScript…

• … which generates JavaScript to be fetched from another large US company
• … which generates more JavaScript poinUng to a smaller US company that uses geo-

targeUng for its ads
• … the ad is a single line of HTML containing an iframe to be fetched from a Russian

adverUsing company
• … when retrieving iframe, “LocaUon:” header redirects browser to a certain IP address
• … which serves encrypted JavaScript, aqempUng mulUple exploits against the browser

[Provos et al.]

Aside: Third-Party Widgets

• Make sites “prettier” using third-party widgets
• Calendars, visitor counters, etc.

• Example: free widget for keeping visitor statistics operates fine from
2002 until 2006
• In 2006, widget starts pushing exploits to all visitors of pages linked to

the counter
http://expl.info/cgi-bin/ie0606.cgi?homepage
http://expl.info/demo.php
http://expl.info/cgi-bin/ie0606.cgi?type=MS03-11&SP1
http://expl.info/ms0311.jar
http://expl.info/cgi-bin/ie0606.cgi?exploit=MS03-11
http://dist.info/f94mslrfum67dh/winus.exe

[Provos et al.]

Login Session

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Session Tokens: Security

● If an attacker steals your session token, they can log in as you!
○ The attacker can make requests and attach your session token
○ The browser will think the attacker’s requests come from you

● Servers need to generate session tokens randomly and securely
● Browsers need to make sure malicious websites cannot steal session

tokens
○ Enforce isolation with cookie policy and same-origin policy

● Browsers should not send session tokens to the wrong websites
○ Enforced by cookie policy

110

Session Token Cookie Attributes

What aoributes should the server set for the
session token?
● Domain and Path: Set so that the cookie

is only sent on requests that require
authenjcajon

● Secure: Can set to True to so the cookie is
only sent over secure HTTPS connecjons

● HopOnly: Can set to True so JavaScript
can’t access session tokens

● Expires: Set so that the cookie expires
when the session jmes out

111

Name token

Value {random value}

Domain mail.google.com

Path /

Secure True

HttpOnly True

Expires {15 minutes
later}

(other fields omitted)

