CS 88: Security and Privacy

07: Web Security + SQL Injection!

02-13-2023
slides adapted from Dave Levine, Deian Stefan, Vitaly Shmatikov, Wenliang Du

B J HH B
SWARTHMORE COLLEGE

A very basic web architecture

Client Server

) 4

-

Browser ------------ _ Web Server

Private data

Database

o / o /

DB is a separate entity,
logically (and often physically)

Databases management systems: DBMS

Users
Name Age Email Password
SpongeBob 20 sponge@ocean.com 1234511
Squidward 60 squiddy@ocean.com clarinet%%
Patrick Star 21 patrick@ocean.com theStar5
Mr. Krabs 55 krusty@ocean.com noFreelunch

Database provides data storage and manipulation

Programmers query the database

Database Management Systems Provide:

semantics for organizing data

a language for querying data

APIs for interoperability (w/other languates)
management: via users + permissions

mailto:squiddy@ocean.com
mailto:patrick@ocean.com
mailto:krusty@ocean.com

Databases: basics

Table
4)
Users « Table Name

Name Age Email Password
SpongeBob 20 sponge@ocean.com 1234511

Squidward 60 squiddy@ocean.com clarinet%%

I Patrick Star 21 patrick@ocean.com theStar5 Row
(Record)
Mr. Krabs 55 krusty@ocean.com noFreelunch

\- 1 y,

Column

mailto:squiddy@ocean.com
mailto:patrick@ocean.com
mailto:krusty@ocean.com

SQL: Standard Query Language

Users
Name Age Email Password
SpongeBob 20 sponge@ocean.com 1234511
Squidward 60 squiddy@ocean.com clarinet%%
Patrick Star 21 patrick@ocean.com theStar5
Mr. Krabs 55 krusty@ocean.com noFreelunch

SELECT Age FROM Users WHERE Name=‘SpongeBob’; Answer = 20

SHOW DATABASES;

R +
| Database |
R +
information schema |
mysql |

sqllab users

|

I

| performance schema |

| |

| sys |
+

5 rows in set (0.00 sec)

mailto:squiddy@ocean.com
mailto:patrick@ocean.com
mailto:krusty@ocean.com

SQL: Standard Query Language

Users
Name Age Email Password
SpongeBob 20 sponge@ocean.com 1234511
Squidward 60 squiddy@ocean.com clarinet%%
Patrick Star 21 patrickstar@ocean.com theStar5
Mr. Krabs 55 krusty@ocean.com noFreelunch
Gary 6 gary@ocean.com snailmail

SELECT Age FROM Users WHERE Name=‘SpongeBob’; Answer = 20

UPDATE Users SET email="patrickStar@ocean.com’ WHERE Age=21; -- this is a comment

INSERT INTO Users Values (‘Gary’, 6, ‘gary@ocean.com’, ‘snailmail’);

DROP TABLE Users;

mailto:squiddy@ocean.com
mailto:patrick@ocean.com
mailto:krusty@ocean.com
mailto:gary@ocean.com
mailto:gary@ocean.com

Server-side code

Example #1 eval() example - simple text merge

<?php

$string = 'cup’;

$name = 'coffee';

$str = 'This is a $string with my $name in it.';

echo $str. "\n";
eval("\$str = \"$str\";");
echo $str. "\n";

7>

The above example will output:

This is a $string with my $name in it.
This is a cup with my coffee in it.

https://www.php.net/manual/en/function.eval.php

. Your program manipulates data
Server-side code

Data manipulates your program

Description

eval(string $code): mixed

Evaluates the given code as PHP.

Caution The eval() language construct is very dangerous because it allows execution of arbitrary PHP code.
Its use thus is discouraged. If you have carefully verified that there is no other option than to use this

construct, pay special attention not to pass any user provided data into it without properly validating it
beforehand.

https://www.php.net/manual/en/function.eval.php

Server-side code

Usemame: I Password: I Log me on automatically each visit Log in

Login code: (php)
$result = mysqgl_query(“SELECT * FROM Users

WHERE (name=‘$user’ and password=‘$pass’);”);

SELECT * FROM Users WHERE Name=‘SpongeBob’; AND password = ’12345!!’;

How can we exploit this code?

SQL Injection

Usemame: l Password: Log me on automatically each visit Log in I

'n
......
a

v e
O
‘‘‘‘‘‘
. "y
. "y
. gy
. ny
....

. LY

spongebob’ or 1=1);#

Sresult = mysql query(“select * from Users
where (name=‘'S$user’ and password=‘Spass’);”);

Sresult = mysql query(“select * from Users
where (name= spongebob’ or 1=1);#
and password=‘whocares’);");

SQL Injection

-IIIllllllllllIllll Illlllllllllllllllllll LN llllllIllIllll
L]
L]
L]
-y

spongebob’ or 1=1); DROP TABLE Users; #

Sresult = mysql query(“select * from Users
where(name='Suser’ and password=‘Spass’);"”);

Sresult = mysql query(“select * from Users
where (name=‘spongebob’ or 1=1);#
DROP TABLE Users; --
‘ and password=‘whocares’);"”);

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

Exploits of a Mom

HI, THIS 1S OH, DEAR - DID HE
YOUR SONG SCHOOL. | BREAK SOMETHING?

LC/grfguHTg “mGOSOI IB"I E N A WAY - /

S|

Exploits of a Mom

HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
\x’ AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATARASE INPUTS.

HeolthCore.g oV Get Insurance Log in

Individuals & Families Small Businesses All Topics v _ﬂu

;select * from users

Improving The Health Insurance Marketplace online application isn't available from JSEEESITINTRETSIEES
we make improvements. Additional down times may be possible as we

Healthcare.gov and the Marketplace call center remain available during these hours. ;show tables;
;premium payments
iselect * from *;

: grant

: rehabilitative and habilitative

Find health coverage |
that works for you

Get quality coverage at a price you can afford.
Open enroliment in the Health Insurance Marketplace
continues until March 31, 2014,

APPLY ONLINE APPLY BY PHONE

SEE PLANS AND PRICES IN YOUR AREA SEE PLANS NOW

Get covered: A one- Find out if you See 4 ways you can Get in-person help in Call 1-800-318-2596

SQL Injection: The underlying issue

* This one string combines the code and the data

e Similar to buffer overflows:

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

SQL Injection: Counter measures

* Blocklists: delete characters you don’t want
* [*][-]1[]
* Safelists:
* Check that the user-provided input is in some set of values known to be safe.
* e.g. integer within the right range
* Given an invalid input:
* better to reject than fix

e “fixes” introduce new vulnerabilities
 principle of fail-safe defaults

* Escape characters:
o { — \1

e :=\;...s00N

The underlying issue

select / from / where

Users

$user password | $pass

The underlying issue

select / from / where

Users

$user password | $pass

Attacks Change Query Structure

<sql_query>

<where_clause>

<cond_term>

<cond_term>

<cond>

<id> <lit

\

<cond>

<id>

<lit>

|

<sql_query>

<where_clause>

<cond_term>

WHERE username = ‘Spongebo

WHERE username = ‘Spongebobpassword =‘1233458!Y’

Benign Query

<comment>

<cond_term>

\
<cond>

<lit> \<«lit>

\

1=1# AND ...

Attack Query

SQL injection countermeasures

Prepared statements & Bind variables

Key idea: Decouple the code and the data

iSresult = mysql query(“select * from Users :
: where (name=‘'$user’ and password=’'$pass’);"),;

SQL injection countermeasures

Prepared statements & Bind variables

Key idea: Decouple the code and the data

$result = mysqgl query(“select * from Users ;
: where (name=‘'S$user’ and password=’$pass’);"),:

Sdb = new mysqgl(“localhost”, *“user”, *“pass”, *“DB");
$Sstatement = $Sdb->prepare(“select * from Users

where (name=? and password=?);"); Bind Variables

Sstatement->bind param(“ss”, $Suser, $pass);
$statement->execute(); gind variables are typed

SQL injection countermeasures
Prepared statements & Bind variables

Key idea: Decouple the code and the data

i iSresult = mysql query(“select * from Users s
| where (name=‘'$user’ and password=‘'$pass’);");:

$db = new mysql(“localhost”, *“user”, “pass”, *“DB");

Sstatement = $db->prepare(“select * from Users

where (name=? and password=?);"); ,
Bind Variables

Decoupling let’s us compile now, before binding the data
$statement->bind param(“ss”, S$user, $pass);

Sstatement->execute(); _
Bind Variables are typed

The underlying issue

§$Statement — $db_>prepare(uselect * from Users
: where(name=? and password=?);"); ;

select / from / where

Users

$user password | $pass

The underlying issue

§$statement = S$db->prepare(“select * from Users
: where(name=? and password=?);");

select / from / where _ ,
Prepare is only applied to the

leaves, so the structure of the

Users tree is fixed.

password

The underlying issue

select / from / where

Prepare is only applied to the
leaves, so the structure of the
tree is fixed.

spongebob’
OR 1=1);# password

Mitigating the impact

* Limit privileges
* limit commands and/or tables a user can access
e E.g.: Allow SELECT queries on Orders_Table but not on Creditcards_Table

* Follow the principle of least privilege
* Encrypt sensitive data

