CS 88: Security and Privacy

06: Software Security — Defenses
02-08-2024

Announcements

* Clicker mappings on edstem.
* please use the google sheet link to update your clicker choices

e Midterm dates:

e Speak to me about accommodations now!

Reading Quiz

L ast Class

 Stack Buffer Overflow
* Integer Overflow Vulnerabilities

Today

* Format String Attacks

* Return Oriented Programming
* S/w Defenses

Return-Oriented Programming

. o A T T . s
LRRE s o L)

N Y N YR T et ot Sl i | G g e

The New Y

Sshwday, Jasury 6, 2007

Daily Blog Tips awarded thi
Laft Jweek Damren Es the Daily Blog Tips is Ren
from the fambus atﬁc Hngl a vast audierfce folls
Pioblogger blag, of | bloggers| Jwho |are imp

annduipced the winners of look g to i ove their
hiclatest Group Wiitinfg] blogy A

ct called 'Reviews\ the

end Fredictions! “t" ' 1,.

st

Reitlulrln |o|r||en|ted| IProlglra Immlingl

Return Oriented Programming: Code Reuse

- Can’tinject code onto the stack (non-executable stack)
- How about assembly instructions that already exist in our code?
- What if we string together a few instructions at a time?
- A short sequence of instructions that we construct are called gadget
- A gadget usually ends in a ret instruction.
- Once we execute ret:
- the address of the next gadget off the stack is popped
- and control flow jumps to that address.

Source: RPISEC: Return Oriented Programming

Attacks on Non-executable pages

Return into libc: set up the stack and “return” to exec()

e Overwrite stuff above saved return address with a “fake call stack”, overwrite
saved return address to point to the beginning of exec() function

* Especially easy on x86 since arguments are passed on the stack

Return Oriented Programming

* |ldea: chain together “return-to-libc” idea many times
* ROP compiler

* Tools democratize things for attackers:

* Find a set of short code fragments (gadgets) that when called in sequence execute the
desired function

* Inject into memory a sequence of saved "return addresses" that will invoke
them Sample gadget: add one to EAX, then return

* Find enough gadgets scattered around existing code that they’re Turing-
complete Compile your malicious payload to a sequence of these gadgets

» Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool and
tomorrow's Script Kiddie download

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

stack libc.so

— exec()
printf()

“/bin/sh”

Return Oriented Programming: Code Reuse

- Can’tinject code onto the stack (non-executable stack)
- How about assembly instructions that already exist in our code?
- What if we string together a few instructions at a time?

- A short sequence of instructions that we construct are called gadgets

Source: RPISEC: Return Oriented Programming

Return Oriented Programming: Code Reuse

- We can get each sequence to end in a “ret” instruction

- l.e.:
- pop the value at the top of the stack

- store thisvalueineip
- decrement the stack pointer 4 bytes below.

- now eip executes whatever instruction is present at
this memory address

- at the next call to ret,
- we again pop the top value of the stack

- store this value in eip,
- and soon...

Source: RPISEC: Return Oriented Programming

Return Oriented Programming: chain gadgets to form a ROP chain

0x401d70
pop rbx

pop rax

ret @

add rax, 0x4
ret @
Ox455e55
syscall

ret
(@)

Objective: set the execve shellcode register state

rax: Ox3b

rdi: “/bin/sh”
rsi: 0

rdx: 0

syscall

Return Oriented Programming: chain gadgets to form a ROP chain

rax:?

rdx:?

rsi:?

rdx:?

Final State:
rax: 0x3b
rdi: “/bin/sh”

rsi: 0
rdx: 0
syscall

this value is popped off the
stack and eip starts executing

these instructions when the

Oy 40170 “ret” call is made. l
pop r'd'i_h_ 0x401d70
et (1 0x489864 -> “/bin/sh”
Ox3b
0x400590
nop rsi 0x400590
pop rdx
ret (2 Ox0
Ox0
0x455e55
syscall [~ Ox455e55

overwritten saved eip value

« esp

Return Oriented Programming: chain gadgets to form a ROP chain

rax:?
overwritten saved eip value
rdx - ? elp = 0x401d70 1
pop rdi 0x401d70
pop rax T >
rsi:? ret 0x489864 -> “/bin/sh « esp
Ox3b
rdx:?
pop rdx
ret Ox0
Final State:
rax: @x3b Ox0
rdi: “/bin/sh”
rsi: @
rdx: 0 syscall [~ Ox455e55

syscall

Return Oriented Programming: chain gadgets to form a ROP chain

rax:?
overwritten saved eip value
rdi: Ox489864 |€lp = 0x401d78 - |
di 0x401d7/0
-> “/bin/sh” ‘ Egg Ea;
- ret 0x489864 -> “/bin/sh”
'S1.
0x3b ¢m esp
. ?
rdx: pop rsi D OX400590
pop rdx
ret Ox0
Final State:
rax: ®x3l? 0x0
rdi: “/bin/sh”
rsi: 0
rdx: 0 syscall = Ox455e55

syscall

Return Oriented Programming: chain gadgets to form a ROP chain

rax:0x3b , _
overwritten saved eip value
rdi: Ox489864 |€lP = 0x401d80 1
op rdi 0x401d70
-> “/bin/sh” POP
pop rax p :)
- ret 0x489864 -> “/bin/sh
rsi:: .
ret statement treats the OX3 b
q 5 next value on the stack
rax. ! as the mem. addr of the es
next instruction OX400590 h P
pop rsi 0
X0
Final State: ggg rdx
rax: ®x3l? 0Ox0
rdi: “/bin/sh”
rsi: 0
rdx: 0 syscall [~ Ox455e55

syscall

Return Oriented Programming: chain gadgets to form a ROP chain

rax:@0x3b

rdi: 0x489864

o ; pop rdi
-> “/bin/sh pop rax
. ret
rsi:?

Final State:
rax: 0x3b
rdi: “/bin/sh”

rsi: 0
rdx: 0
syscall

pop rsi
pop rdx
ret

0x401d70

0x489864 -> “/bin/sh”

Ox3b

0x400590

Ox0

Ox0

syscall =

Ox455e55

Return Oriented Programming: chain gadgets to form a ROP chain

rax:@0x3b

rdi: 0x489864

e T pop rdi 0x401d70
-> “/bin/sh poOp rax .
ret 0x489864 -> “/bin/sh”
rsi:0x0
Ox3b
.7 elp = 0x400598
o —— 0x400590
‘pop rdx
ret Ox0
Final State:
rax: Ox3b 0x0
rd?f “/bin/sh”
EZ;Z 8 syscall +—— Ox455e55

syscall

Return Oriented Programming: chain gadgets to form a ROP chain

rax:@0x3b
rdi: 0x489864
“” . ” pop rd-l-
-> “/bin/sh pOp rax
. ret
rsi:0x0
rdx:0x0 eip = Ox4005A0

pop rsi
pop rdx
ret

ret statement treats the
next value on the stack
as the mem. addr of the
next instruction

Final State:
rax: 0x3b
rdi: “/bin/sh”

rsi: 0
rdx: @

0x401d70

0x489864 -> “/bin/sh”

Ox3b

0x400590

Ox0

Ox0

Ox455e55

syscall ‘ syscall "

Return Oriented Programming: chain gadgets to form a ROP chain

rax:0x3b
rdi: 0x489864
pop rdi 0x401d70
-> “/bin/sh” pop rax — -
ret 0x489864 -> “/bin/sh
rsi:Qx0
Ox3b
rdx:0x0
pop rdx
ret 0Ox0
Final State:
rax: 0x3b
rd?: “?bin/sh” 0Ox455e55 0x0
rsi: @
rdx: @ SySCG-I.-I. ’ OX455€55
syscall

Exactly the state we set out to achieve! We have successfully
launched our shell without injecting any code!

rax:9x3b

rdi: 0x489864
-> “/bin/sh”

rsi:0x0

rdx:9x0

elp = 0x455e55

=)

syscall

Objective: set the execve shellcode register state

rax: Ox3b

rdi: “/bin/sh”
rsi: 0

rdx: 0

syscall

Zooming out

What happened?

Programmer:
This program crashes if the input is too big

Hacker:
Let’s change some local variables!

Actually, let’s call some functions...
Well as long as we’re already here...let’s call some
of *our* specially cherry picked instructions (err.. functions).

Buffer Overtlow: Cures

ldea: prevent execution of untrusted code
* Make stack and other data areas non-executable
* Note: messes up useful functionality (e.g., Flash, JavaScript)
* Digitally sign all code

* Ensure that all control transfers are into a trusted, approved code
image

Validating input

* Determine acceptable input, check for match --- don’t just check against list of
“non-matches”

* Limit maximum length

Watch out for special characters, escape chars.

Check bounds on integer values

Check for negative inputs

Check for large inputs that might cause overflow!

Validating input

* Filenames

Command-line arguments

Even argv[0]...
e Commands
* E.g., URLs, http variables., SQL

* E.g., cross site scripting, (next lecture)

Memory attacks
The problem: mixing data with control flow in memory

Your program manipulates data

local saved _
el Es ebp Data manipulates your program

» S o =t 5 0 R B &

‘ k'f ,t'—‘q;‘: T 'la \
stack frame R T
o T

DESS - i

IeE RS aa A

) | |

“Classic” memory exploit involves code
Injection
Memory Attacks:
Causes * malicious code @ predictable location in
memory -> masquerading as data
 trick vulnerable program into passing control

“Classic” memory exploit involves code injection

ldea: prevent execution of untrusted code

Developer approaches:

V] emory Atta Cl(S: e Use of safer functions like strlcpy(), strlcat() etc.

Ca uses a nd CU res e safer dynamic link libraries that check the length of the data
before copying.

Hardware approaches: Non-Executable Stack
OS approaches: ASLR (Address Space Layout Randomization)

Compiler approaches: Stack-Guard Pro-Police

Data Execution Prevention: a.k.a Mark memory as non-
executable

Each page of memory has separate access permissions:
R -> Can Read, W -> Can Write, X -> Can Execute

Mark all writeable memory locations as non-executable

NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM

* Now you can’t write code to the stack or heap
* No noticeable performance impact

Address Space Layout Randomization

Onload: Randomly relocate the base address of everything

IN memory

* libraries (DLLs, shared libs), application code, stack heap

= attacker does not no location

Example: PAX implementation

Low memory

High memory
addresses

addresses

> <€
.text .data .bss heap x \ stack Env.

<))
~ Random 16-bit offset Random 24-bit offset -~

Address Space Layout Randomization

Low memory High memory
addresses B ——— D —— addresses

.text .data .bss heap \ & stack Env.

7 5 ; 32-bit PaX ASLR (x86)
~ Random 16-Dbit offset Stack:

1 01 0ORRRRRRRRRRRRRRRRRRRRRRRRDOOOD O

fixed random Zero
(24 bits)
Mapped area:
01 00 R RRRRRRRRRRRRRRROOOIOOOO OO OO OO O
fixed random Zero
(16 bits)

Executable code, static variables, and heap:

0 0O 0O ORRRURRRRRRRRRRRIRROOOOOOOOODOOD

fixed random zero
(16 bits)

Low memory High memory

addresses > < addresses
.text .data .bss heap \ & stack Env.
™~ Random 16-bit offset ~ Random 24-bit offset ~~

randomize the start location of stack, code data.

Launch buffer overflow? Difficult to guess the stack address!

Difficult to guess %ebp address and address of the malicious code

Compiler Defenses:
Stack Canary

Method 1: StackGuard

* Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return.

saved ret func. saved ret func.
local local
ebp |address| arg ebp Jaddress| arg
H_I
Local variables
callee’s frame caller frame previous frame
local e saved ret func. local i saved ret func.
ebp |address| arg ebp Jladdress| arg
callee’s frame caller frame previous frame

Sta C kG u a rd Minimal performance effects: 8% for Apache
Program must be recompiled

Overflow canary? Segtfault!

) Lo Lo ° Py
- - - - - - - -

o canar saved | ret func. ocal canary saved ret o
oca y ebp |address| arg ebp Jaddress| arg

previous frame

callee’s frame caller frame

Random canary: Terminator canary:

« Random string chosen at program startup * {0, newline, linefeed, EOF}

« To corrupt, attacker must learn/guess current * String functions will not copy beyond
random string terminator

* Attacker cannot use string functions to
corrupt the stack

Canary check in gcc:

Dump of assembler code for function foo:

0x0000120d <+0>: endbr32

0x00001211 <+4>: push %ebp

0x00001212 <+5>: mov %esp,%ebp
0x00001214 <+7>: push %ebx

0x00001215 <+8>: sub $0x24,%esp
0x00001218 <+11>: call 0x12b4 < x86.get pc thunk.ax>
0x0000121d <+16>: add $0x2db3,%eax
0x00001222 <+21>: mov 0x8 (%ebp) ,sedx
0x00001225 <+24>: mov %edx, -0x1c(%ebp)
0x00001228 <+27>: mov %0s:0x14,%ecx
0x0000122f <+34>: mov %ecx, -0xc(%ebp)
0x00001232 <+37>: xor %ecx,%ecx
0x00001234 <+39>: sub $0x8,%esp
0x00001237 <+42>: pushl -0x1lc(%ebp)
0x0000123a <+45>: lea -0x18(%ebp) , %sedx
0x0000123d <+48>: push Sedx

0x0000123e <+49>: mov %eax,%ebx
0x00001240 <+51>: call 0x10a0 <strcpy@plt>
0x00001245 <+56>: add $0x10,%esp
0x00001248 <+59>: nop

0x00001249 <+60>: mov -0xc (%ebp) ,%eax
0x0000124c <+63>: Xor %0s:0x14,%eax
0x00001253 <+70>: je 0x125a <foo+77>
0x00001255 <+72>: call 0x1340 < stack chk fail local>
0x0000125a <+77>: mov -0x4 (%ebp) ,%ebx
0x0000125d <+80>: leave

0x0000125e <+81>: ret

End of assembler dump.

Defeating StackGuard

buf dst canar saved ret func.
Y ebp Jaddress| arg
N ~
N
local variables callee’s frame | caller frame

Random canary: Terminator canary:
« Random string chosen at program startup * {0, newline, linefeed, EOF}
* To corrupt, attacker must learn/guess current * String functions will not copy beyond

random string terminator

* Attacker cannot use string functions to
corrupt the stack

Defeating StackGuard

buf dst canar saved ret func.
Y ebp Jaddress| arg
N ~
N
local variables callee’s frame | caller frame

Random canary: Terminator canary:
« Random string chosen at program startup * {0, newline, linefeed, EOF}
* To corrupt, attacker must learn/guess current * String functions will not copy beyond

random string terminator

* Attacker cannot use string functions to
corrupt the stack

StackGuard Variations

* Rearrange stack layout to prevent ptr overflow.

String 1
Growth

Stack
Growth

copy of pointer args

local non-buffer variables

local string buffers

CANARY

SFP

ret addr

args

} pointers, but no array:

Protects pointer args and loc:
pointers from a buffer overflc

StackGuard Variations

Buffer
Growth

Stack
Growth

char buffer

esp = Oxffffcdde

CANARY

ebx = Oxffffcdoc

saved ebp

saved eip/return address

args

exception handler pointer

ebp = Oxffffcd80

#

exception
handler code

call %ebx

https://www.caida.org/archive/code-red/coderedv2_analysis/#animations

PointGaurd

* Insight:
* pointers in memory corrupted via overflow
* pointers in registers are not overflowable

e Solution:
» Store pointers encrypted in memory
* To dereference a pointer: decrypt it as you load it unto a register

Normal Pointer Dereference

1. Fetch Pointer Value 2. Access data referenced by pointer

Pointer Data
Memory 0x1234

0x1234

Normal Pointer Dereference under attack

Memory

1. Fetch Pointer Value

2. Access attacker’s data referenced
by corrupted pointer

Corrupt‘!d Pointer Data Malicious
“Ta234| Data
0x1340

0x1234 0x1340

PointerGuard Pointer Dereference

CPU

1. Fetch Pointer Value 0x1234 2. Access data referenced by pointer
Pointer Decryption

Memory 0x7239

Encrypt[d Pointer Data

0x1234

PointerGuard Pointer Dereference Under Attack

Memory

1. Fetch Pointer Value

Pointer Decryption

2. Access random data referenced
by decryption of corrupted pointer

3. Segfault & Crash

Corruptkd Pointer Data Malicious
“TOxF239] Data
0x1340
0x1234 0x1340

Formal Verification

Approaches for Ensuring Memory Safety

* How do we reason about the code to get some confidence that the result will be memory safe?
e Approach using formal mathematical logic, induction to verify that your code is memory safe.

GOAL: You shouldn't have to know what the code inside the function is,
the details of how it works is secondary, the pre- and post-conditions should be sufficient.

General correctness proof strategy for memory safety:

* |dentify each point of memory access

 Write down precondition that it requires

* Propagate that requirement up to the beginning of the function

Setting up pre-and post-conditions

Going through our code base, one function at a time we are specifying the contract or API for each function.
Also known as contract-based coding.

Pre-conditions

* When a function is invoked, and before it starts executing,
the properties of the input variables, that need to be true
for the function execution to be memory safe.

* caller's responsibility to setup

Post-conditions

* the function assumes the caller has setup the pre-
conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

* post-conditions are guarantees the function provides about
the return value or the results of the computation

Setting up pre-and post-conditions

Pre-conditions
 When a function is invoked, and before it starts executing,
the properties of the input variables, that need to be true
int deref(int *p){ for the function execution to be memory safe.

* caller's responsibility to setu
return *p; P Y P

Post-conditions

e the function assumes the caller has setup the pre-
conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

* post-conditions are guarantees the function provides about
the return value or the results of the computation

Setting up pre-and post-conditions

Pre-conditions

 When a function is invoked, and before it starts executing,
the properties of the input variables, that need to be true
for the function execution to be memory safe.

/* requires: p! = NULL
and p as a valid

pointer caller's responsibility to setup
*/
int deref(int *p){
return *p; Post-conditions
} * the function assumes the caller has setup the pre-

conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

* post-conditions are guarantees the function provides about
the return value or the results of the computation

Setting up pre-and post-conditions

Pre-conditions
 When a function is invoked, and before it starts executing,

/* ALTERNATE IMPLEMENTATION the properties of the input variables, that need to be true
requires: p as a valid pointer for the function execution to be memory safe.
*/ * caller's responsibility to setup

int deref(int *p){
it (pl!= NULL)
return *p; Post-conditions

} * the function assumes the caller has setup the pre-
conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

* post-conditions are guarantees the function provides about

the return value or the results of the computation

Setting up pre-and post-conditions

Pre-conditions

 When a function is invoked, and before it starts executing,
the properties of the input variables, that need to be true
for the function execution to be memory safe.

void *mymalloc (unsigned int n){ * caller's responsibility to setup
void *p = malloc(n);
if (Ip){
perror("malloc”); Post-conditions
exit(l); * the function assumes the caller has setup the pre-
} conditions correctly, then the post-conditions are what
return p; should hold after the function finishes executing.
} * post-conditions are guarantees the function provides about

the return value or the results of the computation

Setting up pre-and post-conditions

Pre-conditions

 When a function is invoked, and before it starts executing,
the properties of the input variables, that need to be true
for the function execution to be memory safe.

e caller's responsibility to setup

void *mymalloc (unsigned int n){
void *p = malloc(n);

if (!'p){ Post-conditions
* the function assumes the caller has setup the pre-
conditions correctly, then the post-conditions are what

perror("malloc"); should hold after the function finishes executing.
exit(1); * post-conditions are guarantees the function provides about
} the return value or the results of the computation
return p;

