
CS 88: Security and Privacy
06: Software Security – Defenses

02-08-2024

Announcements

• Clicker mappings on edstem.
• please use the google sheet link to update your clicker choices

• Midterm dates:
• Speak to me about accommoda8ons now!

Reading Quiz

Last Class

• Stack Buffer Overflow
• Integer Overflow Vulnerabilities

Today

• Format String A-acks
• Return Oriented Programming
• S/w Defenses

Return Oriented Programming: Code Reuse

- Can’t inject code onto the stack (non-executable stack)
- How about assembly instructions that already exist in our code?
- What if we string together a few instructions at a time?

- A short sequence of instructions that we construct are called gadget
- A gadget usually ends in a ret instruction.

- Once we execute ret:
- the address of the next gadget off the stack is popped
- and control flow jumps to that address.

Source: RPISEC: Return Oriented Programming

Attacks on Non-executable pages

Return into libc: set up the stack and “return” to exec()

• Overwrite stuff above saved return address with a “fake call stack”, overwrite
saved return address to point to the beginning of exec() function

• Especially easy on x86 since arguments are passed on the stack

Return Oriented Programming

• Idea: chain together “return-to-libc” idea many times

• ROP compiler

• Tools democratize things for attackers:
• Find a set of short code fragments (gadgets) that when called in sequence execute the

desired function

• Inject into memory a sequence of saved "return addresses" that will invoke
them Sample gadget: add one to EAX, then return
• Find enough gadgets scattered around existing code that they’re Turing-

complete Compile your malicious payload to a sequence of these gadgets

• Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool and
tomorrow's Script Kiddie download

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

local buf

saved ebp
return addr

args

stack

exec()
prinY()

“/bin/sh”

libc.so

Return Oriented Programming: Code Reuse

- Can’t inject code onto the stack (non-executable stack)
- How about assembly instructions that already exist in our code?
- What if we string together a few instructions at a time?

- A short sequence of instructions that we construct are called gadgets

Source: RPISEC: Return Oriented Programming

Return Oriented Programming: Code Reuse

- We can get each sequence to end in a “ret” instruction
- i.e.:

- pop the value at the top of the stack
- store this value in eip
- decrement the stack pointer 4 bytes below.

- now eip executes whatever instruction is present at
this memory address

- at the next call to ret,
- we again pop the top value of the stack
- store this value in eip,
- and so on…

Source: RPISEC: Return Oriented Programming

Return Oriented Programming: chain gadgets to form a ROP chain

pop rbx
pop rdx
ret

pop rax
ret

add rax, 0x4
ret

syscall
ret

Objective: set the execve shellcode register state

rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

1

2

3

4

0x401d70

0x455e55

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

this value is popped off the
stack and eip starts executing
these instructions when the
“ret” call is made.

 0x401d70

overwritten saved eip value

esp

1

0x401d70

0x400590

0x455e55

2

3

rdx:?

rax:?

rsi:?

rdx:?

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

rdx:?

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

overwritten saved eip value

esp

eip = 0x401d70

rax:?

rsi:?

rdx:?

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

rax:?

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

overwritten saved eip value

esp

eip = 0x401d78rdi: 0x489864

 -> “/bin/sh”

rsi:?

rdx:?

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

overwritten saved eip value

esp

eip = 0x401d80

ret statement treats the
next value on the stack
as the mem. addr of the
next instruction

rax:0x3b

rdi: 0x489864

 -> “/bin/sh”

rsi:?

rdx:?

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

rax:0x3b

rdi: 0x489864

 -> “/bin/sh”

rsi:?

rdx:?

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

esp

eip = 0x400590

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

esp

eip = 0x400598

rax:0x3b

rdx:?

rdi: 0x489864

 -> “/bin/sh”

rsi:0x0

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

esp

eip = 0x4005A0

ret statement treats the
next value on the stack
as the mem. addr of the
next instruction

rax:0x3b

rdx:0x0

rsi:0x0

rdi: 0x489864

 -> “/bin/sh”

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

0x3b
0x489864 -> “/bin/sh”

Return Oriented Programming: chain gadgets to form a ROP chain

syscall

0x400590

0x0

0x0

0x455e55

pop rdi
pop rax
ret

pop rsi
pop rdx
ret

 0x401d70

esp

eip = 0x455e55

rax:0x3b

rdx:0x0

rsi:0x0

rdi: 0x489864

 -> “/bin/sh”

Final State:
rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

Exactly the state we set out to achieve! We have successfully
launched our shell without injecting any code!

rax:0x3b

rdi: 0x489864

 -> “/bin/sh”

rsi:0x0

rdx:0x0

syscall

eip = 0x455e55

Objec8ve: set the execve shellcode register state

rax: 0x3b
rdi: “/bin/sh”
rsi: 0
rdx: 0
syscall

Zooming out

What happened?

Programmer:
 This program crashes if the input is too big

Hacker:
 Let’s change some local variables!
 Actually, let’s call some functions…
 Well as long as we’re already here...let’s call some
 of *our* specially cherry picked instructions (err.. functions).

Buffer Overflow: Cures

Idea: prevent execution of untrusted code
• Make stack and other data areas non-executable

• Note: messes up useful functionality (e.g., Flash, JavaScript)
• Digitally sign all code
• Ensure that all control transfers are into a trusted, approved code

image

Validating input

• Determine acceptable input, check for match --- don’t just check against list of
“non-matches”
• Limit maximum length
• Watch out for special characters, escape chars.
• Check bounds on integer values
• Check for negative inputs
• Check for large inputs that might cause overflow!

Validating input

• Filenames
• Command-line arguments
• Even argv[0]…
• Commands
• E.g., URLs, hgp variables., SQL
• E.g., cross site scrip8ng, (next lecture)

Memory attacks

The problem: mixing data with control flow in memory

local
variables

saved
ebp

ret
addr arguments

stack frame
data overwrites
return address

Memory Attacks:
Causes

“Classic” memory exploit involves code
injection

• malicious code @ predictable location in
memory -> masquerading as data

• trick vulnerable program into passing control

Memory Attacks:
Causes and Cures

“Classic” memory exploit involves code injection

Idea: prevent execution of untrusted code

Developer approaches:
• Use of safer functions like strlcpy(), strlcat() etc.
• safer dynamic link libraries that check the length of the data

before copying.

Hardware approaches: Non-Executable Stack

OS approaches: ASLR (Address Space Layout Randomization)

Compiler approaches: Stack-Guard Pro-Police

Data Execution Prevention: a.k.a Mark memory as non-
executable

Each page of memory has separate access permissions:
• R -> Can Read, W -> Can Write, X -> Can Execute

Mark all writeable memory locations as non-executable

NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM

• Now you can’t write code to the stack or heap
• No noticeable performance impact

Address Space Layout Randomization
Onload: Randomly relocate the base address of everything

in memory

• libraries (DLLs, shared libs), application code, stack heap

⇒ attacker does not no location

Example: PAX implementation

Address Space Layout Randomization

Difficult to guess %ebp address and address of the malicious code

Launch buffer overflow? Difficult to guess the stack address!

randomize the start location of stack, code data.

Compiler Defenses:
Stack Canary

Method 1: StackGuard
• Embed “canaries” (stack cookies) in stack frames and verify

their integrity prior to function return.

saved
ebp

Local variables

local
ret

address
func.
arg

callee’s frame caller frame

local
saved
ebp

ret
address

func.
arg

previous frame

saved
ebplocal

ret
address

func.
arg

callee’s frame caller frame

local saved
ebp

ret
address

func.
arg

previous frame

canarycanary

🐤 🐤 🐤 🐤 🐤 🐤 🐤 🐤

StackGuard
Overflow canary? Segfault!

saved
ebplocal

ret
address

func.
arg

callee’s frame caller frame

local saved
ebp

ret
address

func.
arg

previous frame

canarycanary

🐤 🐤 🐤 🐤 🐤 🐤 🐤 🐤

⚠

Random canary:
• Random string chosen at program startup
• To corrupt, attacker must learn/guess current

random string

Terminator canary:
• {0, newline, linefeed, EOF}
• String functions will not copy beyond

terminator
• Attacker cannot use string functions to

corrupt the stack

Minimal performance effects: 8% for Apache
Program must be recompiled

Canary check in gcc:

Defeating StackGuard

saved
ebpbuf ret

address
func.
arg

callee’s frame caller frame

canary

🐤 🐤 🐤 🐤

Random canary:
• Random string chosen at program startup
• To corrupt, aGacker must learn/guess current

random string

Terminator canary:
• {0, newline, linefeed, EOF}
• String functions will not copy beyond

terminator
• Attacker cannot use string functions to

corrupt the stack

local variables

dst

Defeating StackGuard

saved
ebpbuf ret

address
func.
arg

callee’s frame caller frame

canary

🐤 🐤 🐤 🐤

Random canary:
• Random string chosen at program startup
• To corrupt, aGacker must learn/guess current

random string

Terminator canary:
• {0, newline, linefeed, EOF}
• String functions will not copy beyond

terminator
• Attacker cannot use string functions to

corrupt the stack

local variables

dst

• Rearrange stack layout to prevent ptr overflow.

args
ret addr

SFP
CANARY

local string buffers

local non-buffer variables

Stack
Growth

pointers, but no arrays

String
Growth

copy of pointer args
Protects pointer args and local
pointers from a buffer overflow

StackGuard Variations

args

saved eip/return address

saved ebp

CANARY

char buffer

Stack
Growth

Buffer
Growth

StackGuard Variations

exception
handler code
….
call %ebx
….exception handler pointer

…
.

ebx = 0xffffcd6c

ebp = 0xffffcd80

esp = 0xffffcd4e

https://www.caida.org/archive/code-red/coderedv2_analysis/#animations

PointGaurd

• Insight:
• pointers in memory corrupted via overflow
• pointers in registers are not overflowable

• Solution:
• Store pointers encrypted in memory
• To dereference a pointer: decrypt it as you load it unto a register

Normal Pointer Dereference

Normal Pointer Dereference under attack

PointerGuard Pointer Dereference

PointerGuard Pointer Dereference Under Attack

Formal Verification

Approaches for Ensuring Memory Safety

• How do we reason about the code to get some confidence that the result will be memory safe?

• Approach using formal mathemaWcal logic, inducWon to verify that your code is memory safe.

GOAL: You shouldn't have to know what the code inside the funcWon is,
the details of how it works is secondary, the pre- and post-condiWons should be sufficient.

General correctness proof strategy for memory safety:
• IdenWfy each point of memory access
• Write down precondiWon that it requires
• Propagate that requirement up to the beginning of the funcWon

Setting up pre-and post-conditions

Pre-conditions
• When a function is invoked, and before it starts executing,

the properties of the input variables, that need to be true
for the function execution to be memory safe.

• caller's responsibility to setup

Going through our code base, one func>on at a >me we are specifying the contract or API for each func>on.
Also known as contract-based coding.

Post-conditions
• the function assumes the caller has setup the pre-

conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

• post-conditions are guarantees the function provides about
the return value or the results of the computation

Setting up pre-and post-conditions

int deref(int *p){
 return *p;
}

Pre-conditions
• When a function is invoked, and before it starts executing,

the properties of the input variables, that need to be true
for the function execution to be memory safe.

• caller's responsibility to setup

Post-condi>ons
• the funcWon assumes the caller has setup the pre-

condiWons correctly, then the post-condiWons are what
should hold a^er the funcWon finishes execuWng.

• post-condiWons are guarantees the funcWon provides about
the return value or the results of the computaWon

Setting up pre-and post-conditions

/* requires: p! = NULL
 and p as a valid
 pointer
*/
int deref(int *p){
 return *p;
}

Pre-condi>ons
• When a funcWon is invoked, and before it starts execuWng,

the properWes of the input variables, that need to be true
for the funcWon execuWon to be memory safe.

• caller's responsibility to setup

Post-conditions
• the function assumes the caller has setup the pre-

conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

• post-conditions are guarantees the function provides about
the return value or the results of the computation

Setting up pre-and post-conditions

/* ALTERNATE IMPLEMENTATION
requires: p as a valid pointer
*/
int deref(int *p){
 if (p!= NULL)
 return *p;
}

Pre-conditions
• When a function is invoked, and before it starts executing,

the properties of the input variables, that need to be true
for the function execution to be memory safe.

• caller's responsibility to setup

Post-condi>ons
• the funcWon assumes the caller has setup the pre-

condiWons correctly, then the post-condiWons are what
should hold a^er the funcWon finishes execuWng.

• post-condiWons are guarantees the funcWon provides about
the return value or the results of the computaWon

Setting up pre-and post-conditions

/* requires:
 Ensures:
*/
void *mymalloc (unsigned int n){
 void *p = malloc(n);
 if (!p){
 perror("malloc");
 exit(1);
 }
 return p;
}

Pre-condi>ons
• When a funcWon is invoked, and before it starts execuWng,

the properWes of the input variables, that need to be true
for the funcWon execuWon to be memory safe.

• caller's responsibility to setup

Post-conditions
• the function assumes the caller has setup the pre-

conditions correctly, then the post-conditions are what
should hold after the function finishes executing.

• post-conditions are guarantees the function provides about
the return value or the results of the computation

Setting up pre-and post-conditions

/*
 Ensures: return value != NULL
 (and a valid pointer)
*/
void *mymalloc (unsigned int n){
 void *p = malloc(n);
 if (!p){
//code checks if malloc returns with
valid pointer
 perror("malloc");
 exit(1);
 }
 return p;
}

Pre-conditions
• When a function is invoked, and before it starts executing,

the properties of the input variables, that need to be true
for the function execution to be memory safe.

• caller's responsibility to setup

Post-condi>ons
• the funcWon assumes the caller has setup the pre-

condiWons correctly, then the post-condiWons are what
should hold a^er the funcWon finishes execuWng.

• post-condiWons are guarantees the funcWon provides about
the return value or the results of the computaWon

