
CS 88: Week 2: Class 5: Software Attacks

Q1. Draw out a stack diagram and build your
very own shellcode attack sandwich.
Information you are given:

● buffer to overflow:
○ char buffer[50]
○ &buffer[0] = 0xffffd88c
○ Saved eip = 0xffffd8bc
○ shellcode = 20 bytes

Task A: Figure out the distance from the
start of the buffer to the saved eip
value.
Task B: Figure out where you want to
point your saved eip to, in the NOP sled
you’ve created.

Q2. We’ve seen that the cause of the vulnerability is often no range checking (i.e.,
string functions in C do not check input size). Assess whether the following range
checking will help:



Q3. Now consider the following code. Do you think it is free from integer overflow
vulnerabilities?

Q3.



A vulnerable password checking program

#include <stdio.h>
#include<strings.h>

int main (int argc, char *argv[]){
int allow_login = 0;
char pwdstr[12];
char targetpwd[12] = “mypwd123”;
gets(pwdstr);
if (strncmp(pwdstr, targetpwd, 12) == 0)

allow_login = 1;
if (allow_login == 0)

printf(“Login request rejected”);
else

printf(“Login request allowed”);
}

Put check marks next to the lines of code that access addresses on main’s stack
frame



What vulnerabilities are present in the code? (list at least 3)

How we safeguard against buffer overflows as a software engineer?

A.Make buffers (slightly) longer than necessary

B.Safe string manipulation functions (other checks we can do?)

C.Don’t write in C. It’s the root of all evil!

D.As a software programmer there’s only so much we can do… there’s no fix.


