
CS 88: Security and Privacy
05: Software Security – Stack Buffer Overflow,
Integer Overflow and Format String Attacks

02-06-2024

Announcements

• lab checkpoint is due today

• please come by for ninja office hours 4-5pm!

Reading Quiz

Today

• Software attacks
• Integer Overflow Attacks
• Format String Attacks
• Return Oriented Programming

Buffer Overflows

Buffer Overflows

• An anomaly that occurs when a program writes/reads data beyond the boundary
of a buffer

• Canonical software vulnerability
• ubiquitous in system software
• OSes, web servers, web browsers

• If your program crashes with memory faults, you probably have a buffer overflow
vulnerability

Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret

0x41414141

shellcode!

%ebp

Jump to attacker supplied code
where?
• put code in the string
• jump to start of the string

saved
eip

0xfoo5ball

%esp

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x41 0x41

hijacked ret

shellcode

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x90 0x90
0x90 0x90

hijacked ret
0x90 0x90
0x90 0x90

shellcode

0x90 0x90

hijacked ret

0x90 0x90
0x90 0x90

shellcode

Putting it all together

15

Some Unsafe C lib Functions

strcpy (char *dest, const char *src)
 strcat (char *dest, const char *src)
 gets (char *s)
 scanf (const char *format, …)
 printf (conts char *format, …)

Avoid strcpy, …

• We have seen that strcpy is unsafe
• strcpy(buf, str) simply copies memory contents into buf starting from *str until “\0” is

encountered, ignoring the size of buf
• Avoid strcpy(), strcat(), gets(), etc.

• Use strncpy(), strncat(), instead

• Even these are not perfect… (e.g., no null termination)
• Always a good idea to do your own validation when obtaining input from

untrusted source
• Still need to be careful when copying multiple inputs into a buffer

slide 17

Cause of vulnerability: No Range Checking
• strcpy does not check input size

• strcpy(buf, str) simply copies memory contents into buf starting from
*str until “\0” is encountered, ignoring the size of area allocated to buf

Width Overflows

uint32_t x = 0x10000;
uint16_t y = 1;
uint16_t z = x + y; // z = ?

• Width overflows occur when assignments are made to variables that can't store the
result

• Integer promotion

• Computation involving two variables x, y where width(x) > width(y)

• y is promoted such that width(x) = width(y)

Sign Overflows

int f(char* buf, int len) {
 char dst_buf[64];
 if (len > 64)
 return 1;
 memcpy(dst_buf, buf, len);
 return 0;
}

• Sign overflows occur when an unsigned variable is treated as signed, or vice-versa
• Can occur when mixing signed and unsigned variables in an expression
• Or, wraparound when performing arithmetic

memcpy(void *, void *, unsigned int)

Heartbleed vulnerability

If your program has a buffer overflow bug, you should assume that the
bug is exploitable and an attacker can take control of your program.

Other overflow targets

• Format strings in C
• Return Oriented Programming

Format String Vulnerabilities

Variable arguments in C

In C, we can define a function with a variable number of arguments

void printf(const char* format,….)

Usage:
 printf(“hello world”);
 printf(“length of %s = %d \n”, str, str.length());

 format specification encoded by special % characters

fun with format strings
printf(“you scored %d\n”, score);

stack base pointer
return address
arg1: 0x08048464
arg2: score = 10

\0 \n d

% d e

r o c s

u o y

printf() function

fun with format strings
printf(“a %s costs $%d\n”, item, price);

stack base pointer
return address
arg1: 0x08048464
arg2: item: 0xdacc
arg3: price: 0.5

\0 \n d %

$ s t

s o c

s % a

printf() function

\n a e p

Implementation of printf

Closer look at the stack

Sloppy use of printf

stack base pointer
return address
arg1: 0x08048464
arg2: 0x08048468
arg3: 0x0804847f
…..
….

.. .. s %

s %

s % s

% s %

Format specification encoded by special % characters

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

A. Store the value 14 in buf
B. Store the value 14 on the stack

(specify where)
C. Replace the string Overflow with 14
D. Something else

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

• Stack location pointed to by
printf’s internal stack pointer will
be interpreted as an address

• Write # characters at this
address

Closer look at the stack

printf(“overflow this!%n”);

Write 14 into the caller’s frame!

fun with printf: what’s the output of the following
statements?

printf(“100% dive into C!”)

printf(“100% samy worm”);

printf(“%d %d %d %d”);

printf(“%d %s);

printf(“100% not another segfault!”);

fun with printf: what’s the output of the following
statements?
printf(“100%dive into C!”)
100 + value 4 bytes below retaddress as an integer + “ive”

printf(“100%samy worm”);
prints bytes pointed to by the stack entry up through the first NULL

printf(“%d %d %d %d”);
print series of stack entries as integers

printf(“%d %s);
print value 4 bytes below return address plus bytes pointed to by the preceding stack entry

printf(“100% not another segfault!”);
prints 100 not another segfault! and stores the number 3 on the stack

Viewing the stack

instruct printf:
• retrieve 5 parameters
• display them as 8-digit padded hexademical numbers

Output

C code

slide 39

Using %n to Mung Return Address

saved
ebp

Local variables

…
ret

address &str

args

printf’s stack frame caller function

Caller’s frame

saved
ebp

Local variables

…
ret

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Buffer with attacker-supplied
input string

Using %n to Mung Return Address

saved
ebp

Local variables

…
ret

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of
characters in attackString into RET

&RET

Using %n to Mung Return Address

C has a concise way of printing multiple symbols:
• %Mx will print exactly 4M bytes (taking them from the stack).
• Attack string should contain enough “%Mx” so that the number of characters printed is equal to the

most significant byte of the address of the attack code.
• Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus replacing RET

with the address of attack code byte by byte.

slide 41

saved
ebp

Local variables

…
ret

address
“… attackString%n”, Caller’s frame

See “Exploiting Format String Vulnerabilities” for details

If your program has a format string bug, assume that the attacker can
learn all secrets stored in memory, and assume that the attacker can
take control of your program.

Secure coding guidelines

1. Only use the memory allocated from a call to malloc. Do not
access/ensure no access to memory that is out of bounds.

2. Free dynamically allocated memory exactly once.

3. Never access freed memory.

4. Always check the return value from a call to malloc (is NULL?).

5. After every call to free, re-assign the pointer to NULL.

6. Zero out sensitive data before freeing it using memset.

7. Do not make any assumptions regarding the memory addresses
returned from malloc. https://github.com/shellphish/how2heap

Source: https://heap-exploitation.dhavalkapil.com/attacks/

https://github.com/shellphish/how2heap

Buffer Overflow: Causes
• Typical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually

masquerading as data

• Trick vulnerable program into passing control to it
• Overwrite saved EIP, function callback pointer, etc.

slide 55

Integer overflows
Output

$./overflow 5 hello
s = 5
hello

$./overflow 80 hello
Oh no you don’t

$./overflow 65536 hello
s = 0
Segmentation fault (core dumped)

What’s wrong with this code?

Integer overflow.
len of type int
memcpy takes an unsigned int

slide 58

Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 notSoSafeCopy(argv[1]);
 }

Off-By-One Overflow

1-byte overflow: can’t change RET, but can change saved pointer to previous stack
frame

This will copy 513
characters into
buffer. Oops!

Attack code

(1) Change the return address to point to the
attack code. After the function returns,
control is transferred to the attack code.

(2) … or return-to-libc: use existing
instructions in the code segment such as
system(), exec(), etc. as the attack code.

①

“/bin/sh”

system()

slide 59

Other Control Hijacking Opportunities: return-to-libc
attack

pointer var (ptr)
buffer (buf)
stack base pointer
return address

args (funcp)

② set stack pointers to
return to a dangerous
library function

pointer var (ptr)
buffer (buf)
stack base pointer
return address
args (funcp)

Attack code Syscall pointer

Global Offset Table

①

②

Other Control Hijacking Opportunities: Function Pointers

slide 60

(1) Change a function pointer to point to the
attack code

(2) Any memory, on or off the stack, can be
modified by a statement that stores a
compromised value into the compromised
pointer. strcpy(buf, str); *ptr = buf[0];

Attack code

Fake return
address
Fake SFP

Other Control Hijacking Opportunities: Frame Pointer

Change the caller’s saved frame pointer to point to
attacker-controlled memory.
Caller’s return address will be read from this memory.

slide 61

Arranged like a
real frame

pointer var (ptr)
buffer (buf)
stack base pointer
return address
args (funcp)

Attacks on Non-executable pages

Return into libc: set up the stack and “return” to exec()

• Overwrite stuff above saved return address with a “fake call stack”, overwrite
saved return address to point to the beginning of exec() function

• Especially easy on x86 since arguments are passed on the stack

Return Oriented Programming
• Idea: chain together “return-to-libc” idea many times

• ROP compiler

• Tools democratize things for attackers:
• Find a set of short code fragments (gadgets) that when called in sequence execute the

desired function

• Inject into memory a sequence of saved "return addresses" that will invoke
them Sample gadget: add one to EAX, then return
• Find enough gadgets scattered around existing code that they’re Turing-

complete Compile your malicious payload to a sequence of these gadgets

• Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool and
tomorrow's Script Kiddie download

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

args
ret-addr

sfp

local buf

stack

exec()
printf()

“/bin/sh”

libc.so

ROP: in more detail
To run /bin/sh we must direct stdin and stdout to the socket:

dup2(s, 0) // map stdin to socket
dup2(s, 1) // map stdout to socket
execve("/bin/sh", 0, 0);

Gadgets in victim code: dup2(s, 1)
ret

dup2(s, 0)
ret

execve("/bin/sh")

Stack (set by attacker): overflow-str 0x408400 0x408500 0x408300

Stack pointer moves up on pop

ret-addr

ROP: in even more detail

dup2(s,0) implemented as a sequence of gadgets in victim code:

Stack (by attacker):

pop rdi
ret

overflow-str 0x408100 s 0x408200 0 0x408300 33 0x408400

pop rsi
ret

pop rax
ret

syscall
ret

0x408100 0x408200 0x408300 0x408400

ret-addr (rdi ⟵ s) (rsi ⟵ 0) (rax ⟵ 33)
syscall #33

5f
c3

5e
c3

How we safeguard against vulnerabilities as a
software engineer?

A. Make buffers (slightly) longer than necessary

B. Safe string manipulation functions (other checks we can do?)

C. Don’t write in C. It’s the root of all evil!

D. As a software programmer there’s only so much we can do… there’s

no fix.

Validating input

• Determine acceptable input, check for match --- don’t just check against list of
“non-matches”
• Limit maximum length
• Watch out for special characters, escape chars.
• Check bounds on integer values
• Check for negative inputs
• Check for large inputs that might cause overflow!

Validating input

• Filenames
• Disallow *, .., etc.
• Command-line arguments
• Even argv[0]…
• Commands
• E.g., URLs, http variables., SQL
• E.g., cross site scripting, (next lecture)

Buffer Overflow: Cures
Idea: prevent execution of untrusted code
• Make stack and other data areas non-executable

• Note: messes up useful functionality (e.g., Flash, JavaScript)
• Digitally sign all code
• Ensure that all control transfers are into a trusted, approved code

image

slide 71

