CS 88: Security and Privacy

05: Software Security — Stack Buffer Overtlow,
Integer Overflow and Format String Attacks

02-06-2024

Announcements

* lab checkpoint is due today

* please come by for ninja office hours 4-5pm!

Reading Quiz

Today

e Software attacks
* Integer Overflow Attacks
* Format String Attacks
* Return Oriented Programming

Buffer Overflows

Buffer Overtlows

* An anomaly that occurs when a program writes/reads data beyond the boundary
of a buffer

e Canonical software vulnerability

* ubiquitous in system software

* OSes, web servers, web browsers

* |f your program crashes with memory faults, you probably have a buffer overflow
vulnerability

Better Hijacking Control

#include <stdio.h>
#include <string.h>
%esp —
void foo() { 0x41414141
printf("hello all!!\n"); 0x41414141
i . %eb >
exit(0); °ebP 0x41414141
} saved — .
eip hijacked ret
void func(int a, int b, char *str) { 0x41414141
int ¢ = 0xfoo5ball
’ shellcode! <
char buf[4];
__, strcpy(buf,str);
3
Jump to attacker supplied code
int main(int argc, char**xargv) { where?

func(@xaaaaaaaa, @xbbbbbbbb,argv[1]); * put code in the string
return 0; * jump to start of the string

}

Putting it all together

char buffer []

local variables

0x41 0x41

hijacked ret

shellcode

saved ebp

saved ret: eip

function arguments

previous frame

0x90 0x90

hijacked ret

0x90 0x90
0x90 0x90

shellcode

0x90 0x90
0x90 0x90

hijacked ret

0x90 0x90
0x90 0x90

shellcode

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

Some Unsafe C lib Functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)

scanf (const char *format, ...)

printf (conts char *format, ...)

15

Avoid strcpy, ...

 We have seen that is unsafe

simply copies memory contents into starting from until is
encountered, ignoring the size of

* Avoid etc.

e Use instead

Even these are not perfect... (e.g., no null termination)

* Always a good idea to do your own validation when obtaining input from
untrusted source

Still need to be careful when copying multiple inputs into a buffer

Cause of vulnerability: No Range Checking

- strcpy does not check input size

- strepy(buf, str) simply copies memory contents into buf starting from
*strountil “\0” is encountered, ignoring the size of area allocated to buf

Width Overtlows

uint32_t x = 0x10000;
uintle_t y = 1;
uintle_t z = x + vy;

 Width overflows occur when assignments are made to variables that can't store the
result

* |nteger promotion
e Computation involving two variables x, y where width(x) > width(y)

* yis promoted such that width(x) = width(y)

Sign Overflows

int f(char* buf, int len) {
char dst_buf[64];
if (len > 64)
return 1;
memcpy(dst_buf, buf, len);
return 0;

memcpy(void *, void *, unsigned 1int)

}

 Sign overflows occur when an unsigned variable is treated as signed, or vice-versa
e Can occur when mixing signed and unsigned variables in an expression
* Or, wraparound when performing arithmetic

Broward Vote-Counting Blunder Changes Amendment Result
POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

AT Soltware is not geared to count more than 32,000 votes in a
precinct. So what happens when it gets to 32,000 is the software starts
quunti&backward," said Broward County Mayor llene Lieberman

! d / Y
Broward County Mayor
Ilene Lieberman says
voting counting error is an

"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, it’s clear amendment 4 passed.

Heartbleed vulnerability

struct {
HeartbeatMessageType type;
uchar payload [HeartbeatMessage.payload length];
uchar padding[padding_length];
} HeartbeatMessage;

If your program has a buffer overflow bug, you should assume that the
bug is exploitable and an attacker can take control of your program.

Other overflow targets

* Format strings in C
* Return Oriented Programming

Format String Vulnerabilities

Variable arguments in C

In C, we can define a function with a variable number of arguments

void printf(const char* format,...)
Usage:
printf(“hello world”);

printf(“length of %s = %d \n”, str, str.length());

format specification encoded by special % characters

fun with format strings
printf(“you scored %d\n”,

),

stack base pointer

printf() function

return address

~|arg1: 0x08048464

arg2: score = 10

\O [\n]|d

% d |e

fun with format strings

printf(*

»

)

),

stack base pointer

printf() function

return address

arg1: 0x08048464

arg2: item: Oxdacc

arg3: price: 0.5

\O

\n

d

%

S

S

S

C

S

%

\n

Implementation of printf

* Special functions va_start, va_arg, va end

compute arguments at run-time

void printf (const char* format, ...)

{

int i; char c¢; char* s; double d;

va_list ap;

o a variable arg list */

* declare an “argument pointer” t
va_start (ap, format); injitialize arg pointer using last known arg */

printf has an internal
stack pointer

for (char* p = format; *p l= *\0’; p++) {
if (*p == '%’) {
switch (*++p)
case ‘4d’:
i = va _arg(ap, int); break;
case gt
s = va_arg(ap, char*); break;
case e’
c¢ = va_arg(ap, char); break;
}
. /* etc. for each % specification */

va_end(ap) ;

/* restore any special stack manipulations */

Closer look at the stack

Internal stack

printf (“Numbers: %d,%d”, 5, 6); pciinter starts here

@ Internal stack
printf (“Numbers: %d,%d”); pointer starts here
N —~— Addr OxFE..F

Local variables Args

Sloppy use of printf

void main(int argc, char™ argv(]) argV[1] = “%s%s%s%s%s%s%s%s%s%s%s”
{

printf(argv([1]);
}

Attacker controls format string gives all sorts of control:
- Print stack contents

- Print arbitrary memory

- Write to arbitrary memory

stack base pointer

return address

arg1: 0x08048464

arg2: 0x08048468

arg3: 0x0804847f

% S % le

Format specification encoded by special % characters

Format Specifiers

Parameter Meaning Passed as
%d decimal (int) value
%u unsigned decimal (unsigned int) value
FX hexadecimal (unsigned int) value
%s string ((const) (unsigned) char) reference
%$n number of bytes written so far, (* int) reference

The %n format specitier

- %n format symbol tells printf to write the number of characters that have been printed
* Argument of printf isinterpreted as a destination address

« printf (“overflow this!%n”, &myVar);
* Writes 14 into myVar.

The %n format specitier

- %n format symbol tells printf to write the number of characters that have been printed
* Argument of printf isinterpreted as a destination address

« printf (“overflow this!%n”, &myVar);
* Writes 14 into myVar.

 What if printf does not have an argument?

« char buf[1l6] = “Overflow this!%n”;
« printf(buf);

. Store the value 14 in buf
. Store the value 14 on the stack

(specify where)

. Replace the string Overflow with 14
. Something else

The %n format specitier

- %n format symbol tells printf to write the number of characters that have been printed
* Argument of printf isinterpreted as a destination address

« printf (“overflow this!%n”, &myVar);
* Writes 14 into myVar.

e Stack location pointed to by
printf’s internal stack pointer will
be interpreted as an address

 What if printf does not have an argument?

« char buf[l6e] = “Overflow this!%n”;
» printf(buf); e \Write # characters at this

address

Closer look at the stack

Internal stack

printf (“Numbers: %d,%d”, 5, 6); pciinter starts here

@ Internal stack
printf(“overflow this!¥%n”); pointer starts here
Local \griables Args Addr OxFF...F

Write 14 into the caller’s framel!

fun with printf: what's the output of the following
statements?

printf(“100% dive into C!”)
printf(“100% samy worm”);
printf(“%d %d %d %d”);
printf(“%d %s);

printf(“100% not another segfault!”);

fun with printf: what's the output of the following

statements?
printf(“100%dive into C!*)

100 + value 4 bytes below retaddress as an integer + “ive”

printf(“100%samy worm”);
prints bytes pointed to by the stack entry up through the first NULL

printf(“%d %d %d %d”);

print series of stack entries as integers

printf(“%d %s);

print value 4 bytes below return address plus bytes pointed to by the preceding stack entry

printf(“100% not another segfault!”);

prints 100 not another segfault! and stores the number 3 on the stack

Viewing the stack

We can show some parts of the stack memory by using a format string like

this:
C code printf ("%08x.%08x.%08x.%08x.%08x\n") ;
Output 40012980.080628c4.bfff£f7a4.00000005.08059c04

instruct printf:
* retrieve 5 parameters
* display them as 8-digit padded hexademical numbers

Using %n to Mung Return Address

saved ret
&str Caller’s frame
ebp |address
H_I %,_I
Local variables args

printf’s stack frame | caller function

saved
ebp

ret

address

“... attackString%n”,

Caller’s frame

H_J

Local variables

printf’s stack frame

— —
.l

Buffer with attacker-supplied
input string

caller function

Using %n to Mung Return Address

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of
characters in attackString into RET

Y

|

saved
ebp

ret
address

“... attackString%n”, &RET

Caller’s frame

H_I

Local variables

printf’s stack frame

caller function

Using %n to Mung Return Address
! |

et
saved | r "... attackString%n”, Caller’s frame
ebp |address
H_I A
Local variables \

C has a concise way of printing multiple symbols:

* %Mx will print exactly 4M bytes (taking them from the stack).

* Attack string should contain enough “%Mx” so that the number of characters printed is equal to the
most significant byte of the address of the attack code.

* Repeat three times (four “%n” in total) to write into &RET+1, & RET+2, &RET+3, thus replacing RET
with the address of attack code byte by byte.

See "“Exploiting Format String Vulnerabilities” for details

If your program has a format string bug, assume that the attacker can
learn all secrets stored in memory, and assume that the attacker can
take control of your program.

Secure coding guidelines

1.

L o S

Only use the memory allocated from a call to malloc. Do not

access/ensure no access to memory that is out of bounds.

. Free dynamically allocated memory exactly once.

Never access freed memory.

Always check the return value from a call to malloc (is NULL?).
After every call to free, re-assign the pointer to NULL.

Zero out sensitive data before freeing it using memset.

Do not make any assumptions regarding the memory addresses

returned from malloc. https://github.con/shel lphish/howZheap
Source: https://heap-exploitation.dhavalkapil.com/attacks/

https://github.com/shellphish/how2heap

Buffer Overflow: Causes

* Typical memory exploit involves code injection

* Put malicious code at a predictable location in memory, usually
masquerading as data

* Trick vulnerable program into passing control to it

* Overwrite saved EIP, function callback pointer, etc.

Integer overflows

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv([]){
unsigned short s;
inti;
char buf[80];

if(argc < 3){
return -1;

}

i = atoi(argv[1]);
S=i;

if(s >= 80) { /* [wi] */
printf("Oh no you don't!\n");
return -1;

}

printf("s = %d\n", s);
memcpy(buf, argv[2], i);
buf[i] = "\0';
printf("%s\n", buf);

return O;

Output

S ./overflow 5 hello
s=5
hello

S ./overflow 80 hello
Oh no you don’t

S ./overflow 65536 hello
s=0
Segmentation fault (core dumped)

What’s wrong with this code?

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()

{

int len = read int_ from network();

char *p = read string from network();
if(len > BUF SIZE) {

printf(“Too large\n”);
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dest, const void *src, size t n);

typedef unsigned int size t;

Integer overflow.
len of type int

memcpy takes an unsigned int

Off-By-One Overflow

Home-brewed range-checking string copy
notSoSafeCopy(*1nput) {
buffer[512]; int 1;

This will copy 513

(1=0; 1<=512; 1++) characters into
buffer[i] = input(il; puer. Oops
¥
main(argc, *argv[]) {
(argc==2)
notSoSafeCopy(argv[l]);
¥

1-byte overflow: can’t change RET, but can change saved pointer to previous stack
frame

Other Control Hijacking Opportunities: return-to-libc

attack

Attack code

(1) Change the return address to point to the
attack code. After the function returns,
control is transferred to the attack code.

(2) ... or return-to-libc: use existing
instructions in the code segment such as
system(), exec(), etc. as the attack code.

pointer var (ptr)

buffer (buf)

stack base pointer

return address

args (funcp)

«— system()

@ set stack pointers to
return to a dangerous
library function

“/bin/sh”

Other Control Hijacking Opportunities: Function Pointers

Global Offset Table

Attack code 3 ;)
yscall pointer |

@ pointer var (ptr)

buffer (buf)

(1) Change a function pointer to point to the stack base pointer
attack code return address
@ args (funcp)

(2) Any memory, on or off the stack, can be
modified by a statement that stores a
compromised value into the compromised
pointer. strcpy(buf, str); *ptr = buf[0];

Other Control Hijacking Opportunities: Frame Pointer

Fake return
address

Fake SFP

Attack code

Arranged like a
real frame

Change the caller’s saved frame pointer to point to
attacker-controlled memory.
Caller’s return address will be read from this memory.

pointer var (ptr)

buffer (buf)

stack base pointer

return address

args (funcp)

Return-Oriented Programming

. o A T T . s
LRRE s o L)

N Y N YR T et ot Sl i | G g e

The New Y

Sshwday, Jasury 6, 2007

Daily Blog Tips awarded thi
Laft Jweek Damren Es the Daily Blog Tips is Ren
from the fambus atﬁc Hngl a vast audierfce folls
Pioblogger blag, of | bloggers| Jwho |are imp

annduipced the winners of look g to i ove their
hiclatest Group Wiitinfg] blogy A

ct called 'Reviews\ the

end Fredictions! “t" ' 1,.

st

Reitlulrln |o|r||en|ted| IProlglra Immlingl

Attacks on Non-executable pages

Return into libc: set up the stack and “return” to exec()

e Overwrite stuff above saved return address with a “fake call stack”, overwrite
saved return address to point to the beginning of exec() function

* Especially easy on x86 since arguments are passed on the stack

Return Oriented Programming

* |ldea: chain together “return-to-libc” idea many times
* ROP compiler

* Tools democratize things for attackers:

* Find a set of short code fragments (gadgets) that when called in sequence execute the
desired function

* Inject into memory a sequence of saved "return addresses" that will invoke
them Sample gadget: add one to EAX, then return

* Find enough gadgets scattered around existing code that they’re Turing-
complete Compile your malicious payload to a sequence of these gadgets

» Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool and
tomorrow's Script Kiddie download

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

| stack | libc.so

» exec()
printf()

“/bin/sh”

ROP: in more detalil

To run /bin/sh we must direct stdin and stdout to the socket:

dup?2(s, 0)
dup2(s, 1)

// map stdin to socket

// map stdout to socket
execve("/bin/sh", 0, 0);

Gadgets in victim code:

execve("/bin/sh")

dup2(s, 1)
ret

Stack (set by attacker):

overflow-str

0x408400

0x408500

0x408300

ret-addr

—

Stack pointer moves up on pop

ROP: in even more detail

dup2(s,0) implemented as a sequence of gadgets in victim code:

5f
c3

0x408100

pop rdi

ret

0x408200

S5e
c3

POp rsi
ret

0x408300

pPOp rax
ret

0x408400

syscall
ret

Stack (by attacker):

overflow-str 0x408100 s 0x408200 O 0x408300 33 0x408400

ret-addr (rax «— 33)

syscall #33

(rdi «<—s) (rsi «<— 0)

How we safeguard against vulnerabilities as a
software engineer?

. Make buffers (slightly) longer than necessary

. Safe string manipulation functions (other checks we can do?)

. Don’t write in C. It’s the root of all evil!

. As a software programmer there’s only so much we can do... there’s

no fix.

Validating input

Determine acceptable input, check for match --- don’t just check against list of
“non-matches”

Limit maximum length

Watch out for special characters, escape chars.

Check bounds on integer values

Check for negative inputs

Check for large inputs that might cause overflow!

Validating input

Filenames

Disallow *, .., etc.

Command-line arguments

Even argv[0]...

Commands
* E.g., URLs, http variables., SQL

* E.g., cross site scripting, (next lecture)

Buffer Overflow: Cures

ldea: prevent execution of untrusted code
* Make stack and other data areas non-executable
* Note: messes up useful functionality (e.g., Flash, JavaScript)
* Digitally sign all code

* Ensure that all control transfers are into a trusted, approved code
image

