
CS 88: Security and Privacy
05: Software Security – Stack Buffer Overflow,
Integer Overflow and Format String Attacks

02-01-2024

Announcements

• Clicker registrations posted – let me know if I don’t have yours

• Please choose partnerships for Lab 1 (EdStem) – last chance.

• Reading quizzes count from this week

• Lab 0 is due today

• Midterm dates on edstem later today

Today

• Software attacks
• Integer Overflow Attacks
• Format String Attacks
• Heap overflow (shelphish)

Buffer Overflows

Putting it all together…

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee
…

First Argument to Callee
Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s
frame.

Callee’s
frame.

2. push arguments

Caller Code
1. save address of next instruction

Callee Code
1. push frame pointer
2. move stack pointer to frame pointer
3. increase stack pointer

Example 1

name[0-3]

name[4-7]

nice[0-3]

nice[4-7]

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

0x0

0xFFFFFFFF

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
 char nice[] = “is nice.”;
 char name[8];
 gets(name);
 printf(“%s %s\n”, name, nice);
 return 0;
}

Function call stack

name[0-3]

name[4-7]

nice[0-3]

nice[4-7]

..

..

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

What happens if we read a long name?

A. Nothing bad will happen
B. Something nonsensical will result
C. Something terrible will result

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
 char nice[] = “is nice.”;
 char name[8];
 gets(name);
 printf(“%s %s\n”, name, nice);
 return 0;
}

Buffer Overflow example

0xfoo5ball

Buffer Overflow example

argv[1]
%esp

Load function arguments starting with the last argument

0xfoo5ball

Buffer Overflow example

0xbbbbbbbb

argv[1]

%esp0xfoo5ball

Buffer Overflow example

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%esp

0xfoo5ball

Buffer Overflow example

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%esp

0xfoo5ball

Buffer Overflow example

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%esp

0xfoo5ball

Buffer Overflow example

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

%esp

0xfoo5ball

Buffer Overflow example

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

%esp

0xfoo5ball

Buffer Overflow example

buf[0-3]

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

0xfoo5ball

%esp

Buffer Overflow example

buf[0-3]

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

0xfoo5ball

%esp

Buffer Overflow example: If the first input is
“AAAAAAAAAAAAAAAA”

buf[0-3]

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

0xfoo5ball

%esp

Buffer Overflow example: If the first input is
“AAAAAAAAAAAAAAAA”

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

%ebp

saved
eip

0xfoo5ball

%esp

Buffer Overflow example: If the first input is
“AAAAAAAAAAAAAAAA”

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

%ebp

0x08049b95

saved
eip

0xfoo5ball

%esp

Buffer Overflow example: If the first input is
“AAAAAAAA\x95\x9b\x04\x08”

0x41414141

0x41414141

0x41414141

0x08049b95

0x41414141

0x41414141

0x41414141

%ebp

saved
eip

0x08049b95

0xfoo5ball

%esp

Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret

0x41414141

shellcode!

%ebp

saved
eip

0xfoo5ball

%esp

Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret

0x41414141

shellcode!

%ebp

Jump to attacker supplied code
where?
• put code in the string
• jump to start of the string

saved
eip

0xfoo5ball

%esp

Shellcode

• Type of control flow hijack: taking control of the instruction
pointer

• Small code fragment to which we transfer control

• Shellcode used to execute a shell

Shellcode

How do we transfer this to code?
Take the compiled assembly?

Payload is not always robust

Exact address of the shellcode start is not always
easy to guess

0x41414141

0x41414141

0x41414141

0x41414141

..

0x41414141

0x41414141

hijacked eip value

0x41414141

shellcode miss! a

shellcode

Miss? Segfault

Fix? NOP Sled!

NOP Sled!
• NOP instruction: 0x90
• NOP sleds are used to pad out exploits

• Composed of instruction sequences that don't affect
proper execution of the attack

• Classically the NOP instruction (0x90), but not restricted to
that

• Why are the called sleds?
• Execution slides down the NOPs into your payload

• Overwritten return address can be less precise, so long as
we land somewhere in the NOP sled

badfile
shellcode +
NOP sled

0x90 (NOP)

0x90 (NOP)

0x90 (NOP)

0x90 (NOP)

..

0x90 (NOP)

0x90 (NOP)

hijacked eip value

0x90 (NOP)

0x90 (NOP)

shellcode

Small Buffers

Buffer can be too small to hold exploit Code

Store exploit code in:
• an environmental variable
• or another buffer allocated on the stack
• redirect return address accordingly

badfile
shellcode +
NOP sled

hijacked eip value

0x90 (NOP)

0x90 (NOP)

long_buffer

environmental
variable

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x41 0x41

hijacked ret

shellcode

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x90 0x90
0x90 0x90

hijacked ret
0x90 0x90
0x90 0x90

shellcode

0x90 0x90

hijacked ret

0x90 0x90
0x90 0x90

shellcode

Putting it all together

• Executable attack code is stored on stack, inside the buffer containing
attacker’s string
• Stack memory is supposed to contain only data, but…

• For the basic stack-smashing attack, overflow portion of the buffer must
contain correct address of attack code in the RET position
• The value in the RET position must point to the beginning of attack

assembly code in the buffer
• Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position his buffer will be
when the function is called

Summary: Stack Code Injection

42

Some Unsafe C lib Functions

strcpy (char *dest, const char *src)
 strcat (char *dest, const char *src)
 gets (char *s)
 scanf (const char *format, …)
 printf (conts char *format, …)

Avoid strcpy, …

• We have seen that strcpy is unsafe
• strcpy(buf, str) simply copies memory contents into buf starting from *str until “\0” is

encountered, ignoring the size of buf
• Avoid strcpy(), strcat(), gets(), etc.

• Use strncpy(), strncat(), instead

• Even these are not perfect… (e.g., no null termination)
• Always a good idea to do your own validation when obtaining input from

untrusted source
• Still need to be careful when copying multiple inputs into a buffer

slide 44

Cause of vulnerability: No Range Checking
• strcpy does not check input size

• strcpy(buf, str) simply copies memory contents into buf starting from
*str until “\0” is encountered, ignoring the size of area allocated to buf

Width Overflows

uint32_t x = 0x10000;
uint16_t y = 1;
uint16_t z = x + y; // z = ?

• Width overflows occur when assignments are made to variables that can't store the
result

• Integer promotion

• Computation involving two variables x, y where width(x) > width(y)

• y is promoted such that width(x) = width(y)

Sign Overflows

int f(char* buf, int len) {
 char dst_buf[64];
 if (len > 64)
 return 1;
 memcpy(dst_buf, buf, len);
 return 0;
}

• Sign overflows occur when an unsigned variable is treated as signed, or vice-versa
• Can occur when mixing signed and unsigned variables in an expression
• Or, wraparound when performing arithmetic

memcpy(void *, void *, unsigned int)

Heartbleed vulnerability

If your program has a buffer overflow bug, you should assume that the
bug is exploitable and an attacker can take control of your program.

Other overflow targets

• Format strings in C
• Heap management structures used by malloc

Format String Vulnerabilities

Variable arguments in C

In C, we can define a function with a variable number of arguments

void printf(const char* format,….)

Usage:
 printf(“hello world”);
 printf(“length of %s = %d \n”, str, str.length());

 format specification encoded by special % characters

fun with format strings
printf(“you scored %d\n”, score);

stack base pointer
return address
arg1: 0x08048464
arg2: score = 10

\0 \n d

% d e

r o c s

u o y

printf() function

fun with format strings
printf(“a %s costs $%d\n”, item, price);

stack base pointer
return address
arg1: 0x08048464
arg2: item: 0xdacc
arg3: price: 0.5

\0 \n d %

$ s t

s o c

s % a

printf() function

\n a e p

Implementation of printf

Closer look at the stack

Sloppy use of printf

stack base pointer
return address
arg1: 0x08048464
arg2: 0x08048468
arg3: 0x0804847f
…..
….

.. .. s %

s %

s % s

% s %

Format specification encoded by special % characters

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

A. Store the value 14 in buf
B. Store the value 14 on the stack

(specify where)
C. Replace the string Overflow with 14
D. Something else

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

• Stack location pointed to by
printf’s internal stack pointer will
be interpreted as an address

• Write # characters at this
address

Closer look at the stack

printf(“overflow this!%n”);

Write 14 into the caller’s frame!

fun with printf: what’s the output of the following
statements?

printf(“100% dive into C!”)

printf(“100% samy worm”);

printf(“%d %d %d %d”);

printf(“%d %s);

printf(“100% not another segfault!”);

fun with printf: what’s the output of the following
statements?
printf(“100%dive into C!”)
100 + value 4 bytes below retaddress as an integer + “ive”

printf(“100%samy worm”);
prints bytes pointed to by the stack entry up through the first NULL

printf(“%d %d %d %d”);
print series of stack entries as integers

printf(“%d %s);
print value 4 bytes below return address plus bytes pointed to by the preceding stack entry

printf(“100% not another segfault!”);
prints 100 not another segfault! and stores the number 3 on the stack

Viewing the stack

instruct printf:
• retrieve 5 parameters
• display them as 8-digit padded hexademical numbers

Output

C code

slide 66

Using %n to Mung Return Address

saved
ebp

Local variables

…
ret

address &str

args

printf’s stack frame caller function

Caller’s frame

saved
ebp

Local variables

…
ret

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Buffer with attacker-supplied
input string

slide 67

Using %n to Mung Return Address

saved
ebp

Local variables

…
ret

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of
characters in attackString into RET

&RET

slide 68

Using %n to Mung Return Address

C has a concise way of printing multiple symbols:
• %Mx will print exactly 4M bytes (taking them from the stack).
• Attack string should contain enough “%Mx” so that the number of characters printed is equal to the

most significant byte of the address of the attack code.
• Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus replacing RET

with the address of attack code byte by byte.

slide 68

saved
ebp

Local variables

…
ret

address
“… attackString%n”, Caller’s frame

See “Exploiting Format String Vulnerabilities” for details

If your program has a format string bug, assume that the attacker can
learn all secrets stored in memory, and assume that the attacker can
take control of your program.

Heap Overflow

Heap based buffer overflow

• Heap stores “chunks” of memory using
linked lists

• when malloc is called:
• stores “meta data” about the chunk

right above the newly allocated block
• metadata can be exploited to corrupt

memory

Figure by Kevin Du, Syracuse University

Heap Overflow Exploit Techniques

Overwrite next pointer in linked list
effectively the same as overwriting the return
address on the stack
when the malloc function is next involved: control
flow is hijacked to point to the attackers code

Heap Buffer Overflow
• a buffer on the heap is not checked
• attacker writes beyond the end of the allocated

chunk and corrupts the pointer.

Lots of different variations:
• use after free
• double free
• unlink exploit
• shrinking free chunks..
• house of spirit…

Heaps

Implementation Platform

ptmalloc2 Linux, HURD (glibc)

SysV AT&T IRIX, SunOS

Yorktown AIX

RtlHeap Windows

tcmalloc Google and others

jemalloc FreeBSD, NetBSD, Mozilla

phkmalloc *BSD

ptmalloc

• Extremely popular malloc (default in glibc)
• Stores memory management metadata inline with user data
• Stored as small chunks before and after user chunks

• Aggressive optimizations
• Maintains lists of free chunks binned by size
• Merges consecutive free chunks to avoid fragmentation

source: https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/

ptmalloc: datastructures

ptmalloc:
datastructures

source: https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/

Source: https://heap-exploitation.dhavalkapil.com/attacks/

Use after free

Source: https://heap-exploitation.dhavalkapil.com/attacks/

Double free

Source: https://heap-exploitation.dhavalkapil.com/attacks/

Secure coding guidelines

1. Only use the memory allocated from a call to malloc. Do not
access/ensure no access to memory that is out of bounds.

2. Free dynamically allocated memory exactly once.

3. Never access freed memory.

4. Always check the return value from a call to malloc (is NULL?).

5. After every call to free, re-assign the pointer to NULL.

6. Zero out sensitive data before freeing it using memset.

7. Do not make any assumptions regarding the memory addresses
returned from malloc. https://github.com/shellphish/how2heap

Source: https://heap-exploitation.dhavalkapil.com/attacks/

https://github.com/shellphish/how2heap

