
CS 88: Security and Privacy
03: Software Security – Buffer Overflow 

Attacks
01-30-2024



Announcements

• Clicker registrations posted – let me know if I don’t have yours

• Please choose partnerships for Lab 1 (EdStem) – last chance. 

• Reading quizzes count from this week

• Lab 0 is due today

• Midterm dates on edstem later today



Reading Quiz



Today

• What is software security
• CS 31 Recap:
• functions and the stack
• assembly instructions

• Stack Buffer Overflow



Software Security



When is a program secure?

A. When it does what we want it to do
B. When we ensure that bad inputs do not result in unintended 

functionality
C. We need B + some more safeguards (what are some examples?)
D. We can never have a secure program



When is a program secure?

• Formal approach: When it does exactly what it should
• not more 

• not less

• But how do we know what it is supposed to do?



When is a program secure?

• Formal approach: When it does exactly what it should
• not more 

• not less

• But how do we know what it is supposed to do?
• somebody tells us (do we trust them?)
• we write the code ourselves (what fraction of s/w have you written?)



When is a program secure?

• Pragmatic approach: when it doesn’t do bad things

• Often easier to specify a list of “bad” things:
• delete or corrupt important files (integrity)

• crash my system (availability)
• send my password over the internet (confidentiality)
• send phishing email



When is a program secure?

• But .. what if the program doesn’t do bad things, but could?

• is it secure?



Weird machines

• complex systems contain unintended functionality

• attackers can trigger this unintended functionality
• i.e. they are exploiting vulnerabilities



What is a software vulnerability?

• A bug in a program that allows an unprivileged user capabilities that should be 
denied to them. 

• There are a lot of types of vulnerabilities
• bugs that violate “control flow integrity”
• why? lets attacker run code on your computer!

• Typically these involve violating assumptions of the programming language or its 
run-time



Exploiting vulnerabilities (the start)

• Dive into low level details of how exploits work
• How can a remote attacker get a victim program to execute their code?

• Threat model: victim code is handling input that comes from across a security 
boundary
• what are examples of this?

• Security policy: want to protect integrity of execution and confidentiality of data 
from being compromised by malicious and highly skilled users of our system. 



Today: stack buffer overflows

• Understand how buffer overflow vulnerabilities can be exploited

• Identify buffer overflows and asses their impact

• Avoid introducing buffer overflow vulnerabilities

• Correctly fix buffer overflow vulnerabilities



Buffer Overflows

• An anomaly that occurs when a program writes/reads data beyond the boundary 
of a buffer

• Canonical software vulnerability
• ubiquitous in system software
• OSes, web servers, web browsers

• If your program crashes with memory faults, you probably have a buffer overflow 
vulnerability
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https://nvd.nist.gov/vuln/search

Common Vulnerabilities and Exposures
(CVE): security flaw that is publicly known 

Critical Systems are written in 
C/C++
• OS kernels
• High-performance servers
• Apache, MySQL

• Embedded Systems
• IoT deivices, “smart” 

vehicles, the MARs 
rover..



CS 31 Recap



Memory

• Abstraction goal: make every process 
think it has the same memory layout.
• MUCH simpler for compiler if the stack 

always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory to 
go around, and no two processes should 
use the same (physical) memory 
addresses.

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track 
of who’s using each memory region.

Text

Data

Stack

OS

Heap



Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Physical Memory: The contents of 
the hardware (RAM) memory.
Managed by OS.  Only ONE of these 
for the entire machine!

Virtual (logical) Memory: The 
abstract view of memory given to 
processes.  Each process gets an 
independent view of the memory.

Address Space:
Range of addresses for 
a region of memory.

The set of available 
storage locations.

0x0

0x…
(Determined by amount of  installed RAM.)

0x0

0xFFFFFFFF
Virtual address space 
(VAS): fixed size.



Memory

• Behaves like a big array of bytes, each 
with an address (bucket #).

• By convention, we divide it into 
regions.

• The region at the lowest addresses is 
usually reserved for the OS.

0x0

0xFFFFFFFF

Operating system



NULL: A special pointer value.

NULL is equivalent to pointing at memory 
address 0x0.  This address is NEVER in a valid 
segment of your program’s memory.

• This guarantees a segfault if you try to 
dereference it.

• Generally a good ideal to initialize pointers 
to NULL.

0x0

0xFFFFFFFF

Operating system



What happens if we launch an attack where we load an 
instruction to execute at 0x0

A. Nothing will happen, this region is mapped to the 
NULL pointer, which does not have any effect

B. There will be some effect, but not necessarily 
devastating

C. This will have a devastating effect. 

0x0

0xFFFFFFFF



Memory - Text

• After the OS, we store the program’s 
code.

• Instructions generated by the 
compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)



Memory – (Static) Data

• Next, there’s a fixed-size region for 
static data.

• This stores static variables that are 
known at compile time.
• Global variables

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data



Memory - Stack

• At high addresses, we keep the stack.

• This stores local (automatic) variables.
• The kind we’ve been using in C so 

far.
• e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data



Memory - Stack

• The stack grows upwards towards 
lower addresses
(negative direction).

• Example: Allocating array
• int array[4];

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data



Memory - Heap

• The heap stores dynamically 
allocated variables.

• When programs explicitly ask 
the OS for memory, it comes 
from the heap.
• malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap



Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

funcA:
…
call funcB
… 

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…



Process memory layout
0x0

0xFFFFFFFF

Operating system

Stack
X:

.text

.data

Heap

.bss

Environment variables
Command line arguments

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section
   global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments



Process memory layout
.text

• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section
   global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

int i = 0;
int main()
{
    char *ptr = malloc(sizeof(int));
    char buf[1024];
    int j;
    static int y; //similar to global 
vars
}

0x0

Operating system

Stack
X:

.text

.data

Heap

.bss

Environment variables
Command line arguments



Process memory layout
.text

• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section
   global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

int i = 0;
int main()
{
    char *ptr = malloc(sizeof(int));
    char buf[1024]
    int j;
    static int y;
}

• i -> data segment
• ptr -> stack

• data allocated on heap
• buf -> stack
• j -> stack
• y -> bss



X86: The De Facto Standard

• Extremely popular for desktop computers

• Alternatives

• ARM: popular on mobile
• MIPS: very simple
• Itanium: ahead of its time

• CISC
• 100 distinct opcodes

• Register poor
• 8 registers of 32 bits
• only 6 general purpose

• instructions are variable length
• not aligned at 4 byte boundaries
• lots of backward compatibilities

• defined in late 70s
• exploit code that no one pays attention to

• we will use 32 bit because its more convenient.



Compilation Steps (.c to a.out)

text

text

binary

executable 
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc   (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code  
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of 
intermediate compilation
steps using different gcc flags

machine code instructions



Compilers

• Computers don't execute source code
• Instead, they use machine code

• Compilers translate code from a higher level to a lower one
• In this context, C → assembly → machine code



Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions



Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

int main() {
 int a = 10;
 int b = 20;

 a = a + b;

 return a;
}



Processor State in Registers

Information about currently 
executing program

• Temporary data
( %eax - %edi )

• Location of runtime stack
( %ebp, %esp )

• Location of current code control 
point ( %eip, … )

• Status of recent tests %EFLAGS
( CF, ZF, SF, OF ) %eip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp



General purpose Registers

Six are for instruction operands

Can store 4 byte data or address value

The low-order 2 bytes  %ax is the low-
order 16 bits of %eax

Two low-order 1 bytes  %al is the low-
order 8 bits of %eax

May see their use in ops involving shorts 
or chars

Register 
name

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip

%EFLAGS

bits: 
31

16 15      
8

7      
0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

%esp %sp

%ebp %bp



Assembly Programmer’s View of State
CPU

Memory

Addresses

Data

Instructions

Registers:  
      PC: Program counter (%eip)

Condition codes (%EFLAGS)
General Purpose (%eax - %ebp)

Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
  data
  instrs
  stack

0xffffffff

32-bit Registers

BUS



Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables

• Previous stack frame base address
• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries
main

0xFFFFFFFF

function 1

function 2



Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Must adjust %esp, %ebp on call / return.

caller

%esp

%ebp …



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
• pushl %ebp

caller

%esp

…%ebp

caller’s %ebp value



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
• pushl %ebp
• Set %ebp = %esp

caller

%esp

…%ebp

caller’s %ebp value



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
• pushl %ebp
• Set %ebp = %esp
• Subtract N from %esp

caller

%esp

…%ebp

caller’s %ebp value

Callee can now execute.



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:

caller

%esp

…%ebp

caller’s %ebp value



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
• set %esp = %ebp

caller

%esp

…%ebp

caller’s %ebp value



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
• set %esp = %ebp
• popl %ebp

caller

%esp

…%ebp

caller’s %ebp value



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
• set %esp = %ebp
• popl %ebp

caller

%esp

…%ebpBack to where we started.

IA32 has another convenience 
instruction for this: leave



callee

caller

%esp

…%ebp

caller’s %ebp value

pushl %ebp (store caller’s frame pointer)

Frame Pointer: Function Call

caller

%esp

…%ebp

Initial state

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %esp, %ebp
(establish callee’s frame pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

subl $SIZE, %esp
(allocate space for callee’s locals)



caller

%esp

…%ebp

popl %ebp (restore caller’s frame pointer)

Frame Pointer: Function Return

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %ebp, %esp
(restore caller’s stack pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

Want to restore caller’s frame.

IA32 provides a convenience 
instruction that does all of this:
leave



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)

Function B



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region
6. (resume funcA)



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)



Functions and the Stack

Program 
Counter (%eip)

Function A

…

Stack Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

call

leave
ret

Return address:

Address of the instruction we should 
jump back to when we finish (return 
from) the currently executing function.



Register Convention

• Caller-saved: %eax, %ecx, %edx
• If the caller wants to preserve these registers, it must save them prior to 

calling callee
• callee free to trash these, caller will restore if needed

• Callee-saved: %ebx, %esi, %edi
• If the callee wants to use these registers, it must save them first, and restore 

them before returning
• caller can assume these will be preserved



Putting it all together…

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee
…

First Argument to Callee
Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s 
frame.

Callee’s 
frame.

2. push arguments

Caller Code
1. save address of next instruction

Callee Code
1. push frame pointer
2. move stack pointer to frame pointer
3. increase stack pointer



Implementing a function call

Stack
data

main:
   …
   subl    $8, %esp
   movl    $2, 4(%esp)
   movl    $l, (%esp)
   call    foo
   addl    $8, %esp
   …

(main) (foo)

foo:
   pushl   %ebp
   movl    %esp, %ebp
   subl    $16, %esp
   movl    $3, -4(%ebp)
   movl    8(%ebp), %eax
   addl    $9, %eax
   leave
   ret 

eip
eip
eip
eip

eip

main 
+42

main
ebp

esp

ebp

esp

21

esp esp%eax 110

eip
eip
eip
eip
eip
eip
eip

3

esp

ebp

eip



Arrays

bar:
  pushl  %ebp
  movl   %esp, %ebp
  subl   $5, %esp
  movl   8(%ebp), %eax
  movl   %eax, 4(%esp)
  leal   -5(%ebp), %eax
  movl   %eax, (%esp)
  call   strcpy
  leave
  ret

(bar) caller
main+2

main
ebp

void main(){
   bar(“CS88);
}

void bar(char * in){
 char name[5]; // “CS88”
  strcpy(name, in);
}

&in

.text .data

HEAP

esp

ebp

‘C’
0x43

‘S’
0x52

‘8’
0x56

‘8’
0x56

‘\0’
0x00

main
local var



Data types / Endianness

x86 is a little-endian architecture

%eax 0xfoo5ball

pushl %eax

esp

0xfo0xo50xba0xll

esp

4 bytes 1 1 1 1

Higher Memory Addresses



Buffer Overflows



Example 1

name[0-3] 

name[4-7]

nice[0-3] 

nice[4-7]

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

0x0

0xFFFFFFFF

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
   char nice[] = “is nice.”;
   char name[8];
   gets(name);
   printf(“%s %s\n”, name, nice);
   return 0;
} 



Function call stack

name[0-3]

name[4-7]

nice[0-3] 

nice[4-7]

..

..

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

What happens if we read a long name?

A. Nothing bad will happen
B. Something nonsensical will result
C. Something terrible will result

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
   char nice[] = “is nice.”;
   char name[8];
   gets(name);
   printf(“%s %s\n”, name, nice);
   return 0;
} 







Buffer Overflow example

0xfoo5ball



Buffer Overflow example

argv[1]
%esp

Load function arguments starting with the last argument

0xfoo5ball



Buffer Overflow example

0xbbbbbbbb

argv[1]

%esp0xfoo5ball



Buffer Overflow example

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%esp

0xfoo5ball



Buffer Overflow example

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%esp

0xfoo5ball



Buffer Overflow example

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%esp

0xfoo5ball



Buffer Overflow example

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

%esp

0xfoo5ball



Buffer Overflow example

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

%esp

0xfoo5ball



Buffer Overflow example

buf[0-3]

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

0xfoo5ball

%esp



Buffer Overflow example

buf[0-3]

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

0xfoo5ball

%esp



Buffer Overflow example: If the first input is 
“AAAAAAAAAAAAAAAA”

buf[0-3]

0xfoo5ball

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

0xfoo5ball

%esp



Buffer Overflow example: If the first input is 
“AAAAAAAAAAAAAAAA”

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

%ebp

saved
eip

0xfoo5ball

%esp



Buffer Overflow example: If the first input is 
“AAAAAAAAAAAAAAAA”

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

%ebp

0x08049b95

saved
eip

0xfoo5ball

%esp



Buffer Overflow example: If the first input is 
“AAAAAAAA\x95\x9b\x04\x08”

0x41414141

0x41414141

0x41414141

0x08049b95

0x41414141

0x41414141

0x41414141

%ebp

saved 
eip

0x08049b95

0xfoo5ball

%esp



Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret

0x41414141

shellcode!

%ebp

saved
eip

0xfoo5ball

%esp



Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret 

0x41414141

shellcode!

%ebp

Jump to attacker supplied code
where?
• put code in the string
• jump to start of the string

saved
eip

0xfoo5ball

%esp



Shellcode

• Type of control flow hijack: taking control of the instruction 
pointer

• Small code fragment to which we transfer control 

• Shellcode used to execute a shell



Shellcode

How do we transfer this to code?
Take the compiled assembly?



Payload is not always robust

Exact address of the shellcode start is not always 
easy to guess

0x41414141

0x41414141

0x41414141

0x41414141

..

0x41414141

0x41414141

hijacked eip value

0x41414141

shellcode miss!   a   

shellcode

Miss? Segfault

Fix? NOP Sled!



NOP Sled!

• NOP instruction: 0x90
• NOP sleds are used to pad out exploits
• Composed of instruction sequences that don't affect 

proper execution of the attack

• Classically the NOP instruction (0x90), but not restricted to 
that

• Why are the called sleds?
• Execution slides down the NOPs into your payload

• Overwritten return address can be less precise, so long as 
we land somewhere in the NOP sled

badfile
shellcode +
NOP sled

0x90 (NOP)

0x90 (NOP)

0x90 (NOP)

0x90 (NOP)

..

0x90 (NOP)

0x90 (NOP)

hijacked eip value

0x90 (NOP)

0x90 (NOP)

shellcode



Small Buffers

Buffer can be too small to hold exploit Code

Store exploit code in:
• an environmental variable
• or another buffer allocated on the stack
• redirect return address accordingly

badfile
shellcode +
NOP sled

hijacked eip value

0x90 (NOP)

0x90 (NOP)

long_buffer

environmental 
variable



char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x41 0x41

hijacked ret

shellcode

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x90 0x90
0x90 0x90

hijacked ret
0x90 0x90
0x90 0x90

shellcode

0x90 0x90

hijacked ret

0x90 0x90
0x90 0x90

shellcode

Putting it all together



• Executable attack code is stored on stack, inside the buffer containing 
attacker’s string 
• Stack memory is supposed to contain only data, but…

• For the basic stack-smashing attack, overflow portion of the buffer must 
contain correct address of attack code in the RET position
• The value in the RET position must point to the beginning of attack 

assembly code in the buffer
• Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position his buffer will be 
when the function is called

Summary: Stack Code Injection


