
CS 88: Security and Privacy
02: Security Mindset

01-25-2024

Reading Quiz

Announcements

• Please sign the ethics form this week to continue in the course

• Update clicker info + office hours that you can make.

• Update your preferences for the midterm exams.

• Please choose partnerships for Lab 1 (EdStem)

Recap: What is “Security”?

Security is about
computing or communicating

in the presence of adversaries.

• Normally, we are concerned with the achieving correctness
• e.g., does this software achieve the desired behavior

• Security is a form of correctness
• does this software prevent “undesired” behavior?

• Security involves an adversary who is active and malicious
• Attackers seek to circumvent protective measures

Recap: What is “Security”?

• General security goals: “CIA”
• Confidentiality
• Integrity
• Availability

Recap: What is “Security”?

Confidentiality (Privacy)

Confidentiality is concealment of information

Adapted from Franzi Roesner, Yoshi Kohno

Integrity

Integrity is prevention of unauthorized changes

Adapted from Franzi Roesner, Yoshi Kohno

Availability

Availability is the ability to use information or resources

Adapted from Franzi Roesner, Yoshi Kohno

General security goals: “CIA”
• Confidentiality
• Integrity
• Availability

• …
• Authenticity
• Accountability and non-repudiation
• Access Control
• Privacy of collected information

Recap: What is “Security”?

Today

• Security Policy & Mechanism
• Examples of security attacks

• Design principles of security

• Software Security

Security: System View: not just for computers

Functionality & Security

• A system normally has a desired functionality: what (“good”) things it
should do in the absence of adversaries.

• The system also normally has a security policy or security objective:
what (“bad”) activities or events should be prevented and/or
detected?

Security Policy

Usually stated in terms of
1. Principals – actors or participants (perhaps in terms of their roles, including

Adversary)

2. Set of impermissible actions (or states)
3. Relating to (classes of) objects

Security Mechanism

• AKA “Security Control”
• Component, technique, or method for (attempting to) achieve or

enforce security policy.

Come up with at least one security policy for each of the
following systems

1. Voting in an election

2. Access to /etc/shadow file on Unix Machines

3. Email delivery to Swat Mail users

4. Text messages sent from Alice to Bob

Security Policy is stated as:
1. Principals – actors or participants (perhaps in terms of their roles, including

Adversary)
2. Set of impermissible actions (or states)
3. Relating to (classes of) objects

Come up with security mechanisms for the following
systems
1. Voting in an election
2. Access to /etc/shadow file on Unix Machines
3. Email delivery to Swat Mail users
4. Text messages sent from Alice to Bob

Security Mechanism is stated as:
• Component, technique, or method for (attempting to) achieve or enforce

security policy.

Two types of security mechanisms

• Prevention: keep security policy from being violated.
• Examples: Fence, password, encryption

• Detection: Detect when security policy is violated.
• Examples: Motion sensor, tamper-evident seal, storing hash of executable,

virus scanner

Goal of Prevention

• to stop the "bad thing" from happening at all

• if prevention works its great

• E.g. if you write in a memory-safe language (like Python) you are immune
from buffer overflow exploits

• if prevention fails, it can fail hard

• E.g. $68M stolen from a Bitcoin exchange, can’t be reversed

Detection & Recovery

• A detection mechanism often comes with an associated recovery
mechanism.
• E.g.: Remove intruder, remove virus, load files from backup.

• Detection may involve deterrence:
• (Adversary risks being identified & being held accountable for security

breach), which may help with prevention.

Detection & Response

• Detection: See that something is going wrong

• Response: Do something about it
• Example: Reverse the harmful actions (restore from backup),

• prevent future harm (block attacker)

• Need both — no point in detection without a way to respond and remediate

False Positive and False Negatives

• False positive:
• You alert when there is nothing there

• False negative:
• You fail to alert when something is there

• Cost of detection:
• Responding to false positives is not free, and if there are too many false

positives, detector gets removed or ignored

• False negatives mean a security failure

Design Principles of Security

• Least Privilege

• Use Fail-Safe Defaults

• Separation of Privilege/Separation of Responsibility

• Defense in Depth

• Complete Mediation: check access to every object

• Security not through obscurity

• Design Security as a core principal

• Keep it simple silly

• Ease of use

• Detect if you can’t prevent

• Economics of Added Security (cost-benefit analysis)

-Saltzer, J. “Protection and the Control of Information Sharing in MULTICS”, CACM - 1974

Defense in Depth
• The notion of layering multiple types of protection together

• e.g., the Theodosian Walls of Constantinople:
• Moat -> wall -> depression -> even bigger wall
• Idea: attacker needs to breach all the defenses to gain access

• But defense in depth isn't free

• You are throwing more resources at the problem

Password authentication

• People have a hard time remembering multiple strong passwords, so they
reuse them on multiple sites

• Consequence: security breach of one site causes account compromise on
other sites

• Solution: password manager
• Remember one strong password, which unlocks access to site passwords

• Solution: two-factor authentication
• Need both correct password and separate device to access account

• Free advice: to protect yourself, use a password manager and two-factor
authentication J

Least Privilege

• Every program and every user of the system should operate using the least set of
privileges necessary to complete the job

• A subject should be given only those privileges necessary to complete its task

– Function, not identity, controls

– Rights added as needed, discarded after use
– Minimal protection domain

What principle does this follow? (if any J)

A. Yes
B. No
C. Maybe (Be prepared to explain)

Thinking About Least Privilege

• When assessing the security of a system’s design, identify the Trusted Computing Base (TCB).

• What components does security rely upon?

• Security requires that the TCB:
• Is correct
• Is complete (can’t be bypassed)
• Is itself secure (can’t be tampered with)

• Best way to be assured of correctness and its security?
• KISS = Keep It Simple, Silly!

• Generally, Simple = Small

• One powerful design approach: privilege separation
• Isolate privileged operations to as small a component as possible

The Base for Isolation: The Operating System

• The operating system provides the following "guarantees"
• Isolation: A process can not access (read OR write) the memory of any other

process

• Permissions: A process can only change files etc if it has permission to
• This usually means "Anything that the user can do" in something like Windows or MacOS

• It can be considerably less in Android or iOS

• But even in Windows, MacOS, & Linux one can say "I don't want any permissions"

Ensuring Complete Mediation

• To secure access to some capability/resource, construct a reference
monitor
• Single point through which all access must occur

• E.g.: a network firewall

• Desired properties: Un-bypassable (“complete mediation”)

• Tamper-proof (is itself secure)

• Verifiable (correct)

• One subtle form of reference monitor flaw concerns race conditions

A Failure of Complete Mediation

● A common failure of ensuring complete mediation involving race
conditions

● Consider the following code:

41

procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. give w dollars to user

Suppose you have $5 in your
account. How can you trick this
system into giving you more than
$5?

Time of Check to Time of Use Vulnerability: Race
Condition

Time of Check to Time of Use Vulnerability: Race Condition

• Ethereum is a cryptocurrency which offers "smart" contracts

• Like a digital vending machine:
• money + snack selection = snack dispensed

• The DAO (Distributed Autonomous Organization) venture capital fund
for crypto
• Participants could vote on "investments" that should be made
• The DAO supported withdrawals as well

Time of Check to Time of Use Vulnerability: Race Condition

A "Feature" In The Smart Contract

• Code
• Check the balance,

• then send the money,

• then update the balance

• Recursive call :
• attacker asks the smart contract to

give Ether back multiple times
before the smart contract could
update its balance

Design Principles of Security

• Least Privilege

• Use Fail-Safe Defaults

• Separation of Privilege/Separation of Responsibility

• Defense in Depth

• Complete Mediation: check access to every object

• Security not through obscurity

• Design Security as a core principal

• Keep it simple silly

• Ease of use

• Detect if you can’t prevent

• Economics of Added Security (cost-benefit analysis)

-Saltzer, J. “Protection and the Control of Information Sharing in MULTICS”, CACM - 1974

Software Security

When is a program secure?

• Formal approach: When it does exactly what it should
• not more

• not less

• But how do we know what it is supposed to do?

When is a program secure?

• Formal approach: When it does exactly what it should
• not more

• not less

• But how do we know what it is supposed to do?
• somebody tells us (do we trust them?)
• we write the code ourselves (what fraction of s/w have you written?)

When is a program secure?

• Pragmatic approach: when it doesn’t do bad things

• Often easier to specify a list of “bad” things:
• delete or corrupt important files (integrity)

• crash my system (availability)
• send my password over the internet (confidentiality)
• send phishing email

When is a program secure?

• But .. what if the program doesn’t do bad things, but could?

• is it secure?

Weird machines

• complex systems contain unintended functionality

• attackers can trigger this unintended functionality
• i.e. they are exploiting vulnerabilities

What is a software vulnerability?

• A bug in a program that allows an unprivileged user capabilities that should be
denied to them.

• There are a lot of types of vulnerabilities
• bugs that violate “control flow integrity”
• why? lets attacker run code on your computer!

• Typically these involve violating assumptions of the programming language or its
run-time

Exploiting vulnerabilities (the start)

• Dive into low level details of how exploits work
• How can a remote attacker get a victim program to execute their code?

• Threat model: victim code is handling input that comes from across a security
boundary
• what are examples of this?

• Security policy: want to protect integrity of execution and confidentiality of data
from being compromised by malicious and highly skilled users of our system.

Today: stack buffer overflows

• Understand how buffer overflow vulnerabilities can be exploited

• Identify buffer overflows and asses their impact

• Avoid introducing buffer overflow vulnerabilities

• Correctly fix buffer overflow vulnerabilities

Buffer Overflows

• An anomaly that occurs when a program writes data beyond the boundary of a
buffer

• Canonical software vulnerability
• ubiquitous in system software
• OSes, web servers, web browsers

• If your program crashes with memory faults, you probably have a buffer overflow
vulnerability

56

https://nvd.nist.gov/vuln/search

Common Vulnerabilities and Exposures
(CVE): security flaw that is publicly known

Critical Systems are written in
C/C++
• OS kernels
• High-performance servers
• Apache, MySQL

• Embedded Systems
• IoT deivices, “smart”

vehicles, the MARs
rover..

CS 31 Recap

Memory

• Abstraction goal: make every
process think it has the same
memory layout.
• MUCH simpler for compiler if the

stack always starts at 0xFFFFFFFF,
etc.

• Reality: there’s only so much
memory to go around, and no two
processes should use the same
(physical) memory addresses.

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track
of who’s using each memory region.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Physical Memory: The contents of
the hardware (RAM) memory.
Managed by OS. Only ONE of these
for the entire machine!

Virtual (logical) Memory: The
abstract view of memory given to
processes. Each process gets an
independent view of the memory.

Address Space:
Range of addresses for
a region of memory.

The set of available
storage locations.

0x0

0x…
(Determined by amount of installed RAM.)

0x0

0xFFFFFFFF
Virtual address space
(VAS): fixed size.

Memory

• Behaves like a big array of bytes,
each with an address (bucket #).

• By convention, we divide it into
regions.

• The region at the lowest
addresses is usually reserved for
the OS.

0x0

0xFFFFFFFF

Operating system

Slide 60

NULL: A special pointer value.

• NULL is equivalent to pointing at
memory address 0x0. This address
is NEVER in a valid segment of your
program’s memory.
• This guarantees a segfault if you try to

deref it.
• Generally a good ideal to initialize

pointers to NULL.

0x0

0xFFFFFFFF

Operating system

What happens if we launch an attack where we load an
instruction to execute at 0x0

A. Nothing will happen, this region is
mapped to the NULL pointer, which
does not have any effect

B. There will be some effect, but not
necessarily devastating

C. This will have a devastating effect.

0x0

0xFFFFFFFF

Memory - Text

• After the OS, we store the
program’s code.

• Instructions generated by the
compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Slide 63

Memory – (Static) Data

• Next, there’s a fixed-size region
for static data.

• This stores static variables that
are known at compile time.
• Global variables

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Slide 64

Memory - Stack

• At high addresses, we keep the
stack.

• This stores local (automatic)
variables.
• The kind we’ve been using in C so

far.
• e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Slide 65

Memory - Stack

• The stack grows upwards towards
lower addresses
(negative direction).

• Example: Allocating array
• int array[4];

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Slide 66

Memory - Heap

• The heap stores
dynamically allocated
variables.

• When programs explicitly
ask the OS for memory, it
comes from the heap.
• malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Slide 67

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

funcA:
…
call funcB
…

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…

Slide 68

Process memory layout

0x0

0xFFFFFFFF

Operating system

Stack
X:

.text

.data

Heap

Slide 69

.bss

Environment variables
Command line arguments

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section
 global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

Process memory layout

Slide 70

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section
 global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

int i = 0;
int main()
{
 char *ptr = malloc(sizeof(int));
 char buf[1024]
 int j;
 static int y;
}

Process memory layout

Slide 71

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section
 global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

int i = 0;
int main()
{
 char *ptr = malloc(sizeof(int));
 char buf[1024]
 int j;
 static int y;
}

• i -> data segment
• ptr -> stack

• data allocated on heap
• buf -> stack
• j -> stack
• y -> bss

X86: The De Facto Standard

• Extremely popular for desktop computers
• Alternatives

• ARM: popular on mobile
• MIPS: very simple
• Itanium: ahead of its time

• CISC
• 100 distinct opcodes

• Register poor
• 8 registers of 32 bits
• only 6 general purpose

• instructions are variable length
• not aligned at 4 byte boundaries

• lots of backward compatibilities
• defined in late 70s
• exploit code that noone pays attention to

• we will use 32 bit because its more convenient.

Recall: Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text
static data segment

runtime heap

funcA:
…
call funcB
…

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…

Recall: Instructions in Memory
0x0

0xFFFFFFFF

Operating system

Stack

Text

static data segment

runtime heap

funcA:
…
call funcB
…

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…

shared libs

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Slide 75

machine code instructions

Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions
• some bits: encode the instruction (opcode bits)
• others encode operand(s)

 (eg) 01001010 opcode operands
 01 001 010
 ADD %r1 %r2

• different bits fed
through different
CPU circuitry:

MUXRegister #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

76

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Assembly Code

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Human Readable Form
of Machine Code

Slide 77

machine code instructions

What is “assembly”?

Assembly is the
“human readable”
form of the
instructions a
machine can
understand.

push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

objdump –d a.out

Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

Slide 79

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions

Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

int main() {
 int a = 10;
 int b = 20;

 a = a + b;

 return a;
}

Slide 80

Processor State in Registers

• Information about
currently executing
program
• Temporary data

(%eax - %edi)
• Location of runtime stack

(%ebp, %esp)
• Location of current code

control point (%eip, …)
• Status of recent tests

%EFLAGS
(CF, ZF, SF, OF)

%eip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Slide 81

General purpose Registers
Six are for instruction operands

Can store 4 byte data or address value

The low-order 2 bytes %ax is the low-order 16 bits of %eax

Two low-order 1 bytes %al is the low-order 8 bits of %eax

May see their use in ops involving shorts or chars

Register
name

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip

%EFLAGS

bits:
31

16 15
8

7
0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

%esp %sp

%ebp %bp Slide 82

Assembly Programmer’s View of State
CPU

Memory

Addresses

Data

Instructions

Registers:
 PC: Program counter (%eip)

Condition codes (%EFLAGS)
General Purpose (%eax - %ebp)

Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
 data
 instrs
 stack

0xffffffff

32-bit Registers

BUS

Slide 83

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables

• Previous stack frame base address
• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries
main

0xFFFFFFFF

function 1

function 2

Slide 84

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

Slide 85

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Must adjust %esp, %ebp on call / return.

caller

%esp

%ebp …

Slide 86

callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
• pushl %ebp

caller

%esp

…%ebp

caller’s %ebp value

Slide 87

callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
• pushl %ebp
• Set %ebp = %esp

caller

%esp

…%ebp

caller’s %ebp value

Slide 88

callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
• pushl %ebp
• Set %ebp = %esp
• Subtract N from %esp

caller

%esp

…%ebp

caller’s %ebp value

Callee can now execute.

Slide 89

callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:

caller

%esp

…%ebp

caller’s %ebp value

Slide 90

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
• set %esp = %ebp

caller

%esp

…%ebp

caller’s %ebp value

Slide 91

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
• set %esp = %ebp
• popl %ebp

caller

%esp

…%ebp

caller’s %ebp value

Slide 92

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
• set %esp = %ebp
• popl %ebp

caller

%esp

…%ebpBack to where we started.

IA32 has another convenience
instruction for this: leave

Slide 93

callee

caller

%esp

…%ebp

caller’s %ebp value

pushl %ebp (store caller’s frame pointer)

Frame Pointer: Function Call

caller

%esp

…%ebp

Initial state

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %esp, %ebp
(establish callee’s frame pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

subl $SIZE, %esp
(allocate space for callee’s locals)

Slide 94

caller

%esp

…%ebp

popl %ebp (restore caller’s frame pointer)

Frame Pointer: Function Return

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %ebp, %esp
(restore caller’s stack pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

Want to restore caller’s frame.

IA32 provides a convenience
instruction that does all of this:
leave

Slide 95

Functions and the Stack

Program
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)

Function B

Slide 96

Functions and the Stack

Program
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip

Slide 97

Functions and the Stack

Program
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region
6. (resume funcA)

Slide 98

Functions and the Stack

Program
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

Slide 99

Functions and the Stack

Program
Counter (%eip)

Function A

…

Stack Memory Region

Stored eip in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

call

leave
ret

Return address:

Address of the instruction we should
jump back to when we finish (return
from) the currently executing function.

Slide 100

Register Convention

• Caller-saved: %eax, %ecx, %edx
• If the caller wants to preserve these registers, it must save them prior to

calling callee
• callee free to trash these, caller will restore if needed

• Callee-saved: %ebx, %esi, %edi
• If the callee wants to use these registers, it must save them first, and restore

them before returning
• caller can assume these will be preserved

Slide 101

Putting it all together…

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee
…

First Argument to Callee
Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s
frame.

Callee’s
frame.

2. push arguments

Slide 102

Caller Code
1. save address of next instruction

Callee Code
1. push frame pointer
2. move stack pointer to frame pointer
3. increase stack pointer

Implementing a function call

Stack
data

main:
 …
 subl $8, %esp
 movl $2, 4(%esp)
 movl $l, (%esp)
 call foo
 addl $8, %esp
 …

(main) (foo)

foo:
 pushl %ebp
 movl %esp, %ebp
 subl $16, %esp
 movl $3, -4(%ebp)
 movl 8(%ebp), %eax
 addl $9, %eax
 leave
 ret

eip
eip
eip
eip

eip

main
+42

main
ebp

esp

ebp

esp

21

esp esp%eax 110

eip
eip
eip
eip
eip
eip
eip

3

esp

ebp

eip

Arrays

bar:
 pushl %ebp
 movl %esp, %ebp
 subl $5, %esp
 movl 8(%ebp), %eax
 movl %eax, 4(%esp)
 leal -5(%ebp), %eax
 movl %eax, (%esp)
 call strcpy
 leave
 ret

(bar) caller
eip+2

caller
ebp

void bar(char * in){
 char name[5];
 strcpy(name, in);
}

&in

.text .data

HEAP

esp

ebp

‘C’
0x44

‘S’
0x72

‘8’
0x65

‘8’
0x77

‘\0’
0x00

Data types / Endianness

• x86 is a little-endian architecture

%eax 0xdeadbeef

pushl %eax

esp

0xde0xad0xbe0xef

esp

4 bytes 1 1 1 1

Buffer Overflows

When is a program secure?

• Formal approach: When it does exactly what it should
• not more
• not less

• But how do we know what it is supposed to do?

Example 1

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
 char nice[] = “is nice.”;
 char name[8];
 gets(name);
 printf(“%s %s\n”, name, nice);
 return 0;
}

name[0-3]

name[4-7]

nice[0-3]

nice[4-7]

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

0x0

0xFFFFFFFF

Function call stack

#include <stdio.h>

#include <string.h>

int main(int argc, char**argv){

 char nice[] = “is nice.”;

 char name[8];
 gets(name);

 printf(“%s %s\n”, name, nice);

 return 0;

}

name[0-3]

name[4-7]

nice[0-3]

nice[4-7]

..

..

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

What happens if we read a long name?

A. Nothing bad will happen
B. Something nonsensical will result
C. Something terrible will result

