
CS 88: Security and Privacy
19: Transport Layer Security

11-17-2022
slides adapted from UC Berkeley, Stanford, Vitaly Shmatikov

Reading Quiz

Credit: Adrienne Porter Felt (Google)

Options

Transmission Control Protocol

Reliable, in-order, bi-directional byte streams
• Port numbers for addressing application layer packets
• Flow control
• Congestion control, approximate fairness

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 7

Three Way Handshake

• Each side:
• Notifies the other of starting sequence number
• ACKs the other side’s starting sequence number

Client
Active participant

Server
Passive participant

SYN (Seq NUM=C)

SYN/ACK (Seq NUM =S, ACK =SeqC+1)

ACK (Seq NUM = C+1, ACK = SeqS+1)

+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

Slide 8

TCP Three Way Handshake SYN seq: C

SYN-ACK seq: S, ack: C+1

ACK seq: C+1, ACK seq: S+1

+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

A. SYN-ACK: ack:200, ACK: seq: 300, ack: 400

B. SYN-ACK: ack:201, ACK: seq: 301, ack: 401

C. SYN-ACK: ack:101, ACK: seq: 101, ack: 201

D. SYN-ACK: ack:101, ACK: seq: 201, ack: 101

DATA: GET REQUEST

DATA: index.html

How should we choose the initial sequence number?

A. Start from zero

B. Start from one

C. Start from a random number

D. Start from some other value (such as…?)

What can go wrong with
sequence numbers?
-How they’re chosen?
-In the course of using them?

Slide 10

TCP Connection Spoofing: Sequence Prediction Attack

Target Server

Trusted Client

Attacker (From: Forged IP of Trusted Client)SYN

SYN ACK

(From: Forged IP of Trusted Client)
ACK (Guess the ISN of server)

Evil commands

Slide 11
Options

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

TCP Connection Spoofing: Sequence Prediction Attack

Target Server

Trusted Client

Attacker (From: Forged IP of Trusted Client)SYN

SYN ACK

(From: Forged IP of Trusted Client)
ACK (Guess the ISN of server)

Evil commands

Slide 12

Can we impersonate another host when
initiating a connection?

Off-path attacker can send initial SYN to server
…
… but cannot complete three-way handshake
without seeing the server’s sequence number

1 in 232 chance to guess right if initial sequence
number chosen uniformly at random

TCP Flags: Ending/Aborting a Connection

● ACK
○ Indicator that the user is acknowledging the receipt of something (in the ack

number)
○ Pretty much always set except the very first packet

● SYN
○ Indicator of the beginning of the connection

● FIN
○ One way to end the connection
○ Requires an acknowledgement
○ No longer sending packets, but will continue to receive

● RST
○ One way to end a connection
○ Does not require an acknowledgement
○ No longer sending or receiving packets

13

TCP: Ending/Aborting a Connection

● To end a connection, one side sends a packet with the FIN (finish) flag
set, which should then be acknowledged
○ This means “I will no longer be sending any more packets, but I will continue to

receive packets”
○ Once the other side is no longer sending packets, it sends a packet with the FIN

flag set
● To abort a connection, one side sends a packet with the RST (reset) flag

set
○ This means “I will no longer be sending nor receiving packets on this

connection”
○ RST packets are not acknowledged since they usually mean that something

went wrong

14

TCP RST Injection

TCP RST Injection Attack

The attacker can inject RST packets and block connection
TCP clients must respect RST packets and stop all communication

Who uses this? Historically..
• China: The Great Firewall does this to TCP requests
• A long time ago: Comcast, to block BitTorrent uploads
• Some intrusion detection systems: To hopefully mitigate an attack in progress

Who can do RST
injection?
A. off-path attacker
B. on-path attacker
C. man-in-the-middle

TCP Data Injection: Tampering with an existing session to
modify or inject data into a connection

17

Client Serve
rACK. Seq = x+1, Ack = y+1. Data, length A

ACK. Seq = y+1, Ack = x+1+A. Real data, length B

This packet will be
ignored by the client

since the client already
processed the malicious

packet!

Seq = y+1. Evil data, length B

TCP Attacks

● TCP hijacking: Tampering with an existing session to modify or inject
data into a connection
○ Data injection: Spoofing packets to inject malicious data into a connection

■ Need to know: The sender’s sequence number

○ Easy for MITM and on-path attackers, but off-path attackers must guess 32-bit
sequence number (called blind injection/hijacking, considered difficult)

○ For on-path attackers, this becomes a race condition since they must beat the
server’s legitimate response

18

TCP Spoofing

19

Client Server

RST. Seq = x+1

SYN-ACK. Seq = y, Ack = x+1

SYN. Seq = x

ACK. Seq = x+1, Ack = y+1. Evil data An on-path attacker must
send the evil data before
the server receives the

real client’s RST!
A MITM attack could just
drop the client’s packets,

however

TCP Provides..

A. Confidentiality
B. Availability
C. Integrity
D. None of the above

20

TCP Provides..

● TCP provides no confidentiality or integrity
○ Instead, we rely on higher layers (like TLS, more on this next time) to prevent

those kind of attacks
● Defense against off-path attackers rely on choosing random sequence

numbers
○ Bad randomness can lead to trivial off-path attacks: TCP sequence numbers

used to be based on the system clock!

21

User Datagram Protocol (UDP)

22

● Provides a datagram abstraction
○ A message, sent in a single packet
○ Max size limited by max size of packet
○ Applications break their data into datagrams, which are sent and received as a

single unit
○ Contrast with TCP, where the application can use a bytestream abstraction

● No reliability or ordering guarantees, but adds ports
○ It still has best effort delivery

● Much faster than TCP, since there is no 3-way handshake
○ Usually used by low-latency, high-speed applications where errors are okay (e.g.

video streaming, games)

User Datagram Protocol (UDP)

23

● No sequence numbers, so relatively easy to inject data into a connection
or spoof connections

● Higher layers must provide their own defenses against these attacks!

UDP Attacks

24

UDP Packet Structure

Source Port (16 bits) Destination Port (16 bits)

Length (16 bits) Checksum (16 bits)

Data (variable length)

25

TCP Provides..

● TCP provides no confidentiality or integrity
○ Instead, we rely on higher layers (like TLS, more on this next time) to prevent

those kind of attacks
● Defense against off-path attackers rely on choosing random sequence

numbers
○ Bad randomness can lead to trivial off-path attacks: TCP sequence numbers

used to be based on the system clock!

26

TLS: transport layer security

27

SSL/TLS

● Secure Sockets Layer and Transport Layer Security protocols
○ Same protocol design, different cryptographic algorithms

● The de facto standard for Internet security
○ “The primary goal of the TLS protocol is to provide privacy and data

integrity between two communicating applications”
● Deployed in every Web browser (HTTPS); also mobile

applications, payment systems, VoIP, many distributed systems,
etc.

SSL / TLS
Guarantees

◦ End-to-end secure communications
in the presence of a network attacker
◦ Attacker completely 0wns the network:

controls Wi-Fi, DNS, routers, his own
websites, can listen to any packet, modify
packets in transit, inject his own packets
into the network

◦ Scenario: you are reading your email
from an Internet café connected via a
r00ted Wi-Fi access point to a dodgy
ISP in a hostile authoritarian country

TLS Threat Model

30

ISP1 ISP2

Back
bone

ISP3 destination

DNS server

but not the endpoints

Remember TCP/IP, DNS attacks?
TLS is all that stands between us and oblivion…

Establishing a Secure Channel

Client Server

Handshake protocol:
use public-key cryptography to
authenticate each other,
establish shared symmetric keys

Record protocol:
use symmetric keys to protect
confidentiality, integrity,
authenticity of exchanged data

Keys established

Data

● TLS (Transport Layer Security): A protocol for
creating a secure communication channel over the
Internet
○ Replaces SSL (Secure Sockets Layer), which is an

older version of the protocol
● TLS is built on top of TCP

○ Relies upon: Byte stream abstraction between
the client and the server

○ Provides: Byte stream abstraction between the
client and the server
■ The abstraction appears the same to the

end client, but TLS provides confidentiality
and integrity!

32

TLS

Transport

(Inter) Network

Link

Physical1

2

3

4

4.5

Application7

Transport Layer Security

Today: Secure Internet Communication with TLS

● Goals of TLS
○ Confidentiality: Ensure that attackers cannot read your traffic
○ Integrity: Ensure that attackers cannot tamper with your traffic

■ Prevent replay attacks
● The attacker records encrypted traffic and then replays it to the server
● Example: Replaying a packet that sends “Pay $10 to Mallory”

○ Authenticity: Make sure you’re talking to the legitimate server
■ Defend against an attacker impersonating the server

33

34

TLS Handshake Step 1: Exchange Hellos

● Assume an underlying TCP connection has
already been formed

● The client sends ClientHello with
○ A 256-bit random number RB (“client random”)
○ A list of supported cryptographic algorithms

● The server sends ServerHello with
○ A 256-bit random number RS (“server random”)
○ The algorithms to use (chosen from the client’s list)

● RB and RS prevent replay attacks
○ RB and RS are randomly chosen for every

handshake
○ This guarantees that two handshakes will never be

exactly identical

Client Server

ServerHello

ClientHello

35

TLS Handshake Step 2: Certificate
● The server sends its certificate

○ Recall certificates: The server’s identity and
public key, signed by a trusted certificate
authority

● The client validates the certificate
○ Verify the signature in the certificate

● The client now knows the server’s public key
○ The client is not yet sure that they are talking

to the legitimate server (not an impersonator)
○ Recall: Certificates are public. Anyone can

provide a certificate for anybody

Client Server

ServerHello

ClientHello

Certificate

ServerHello

ClientHello

36

TLS Handshake Step 3: Premaster Secret

● This step has two main purposes
○ Make sure the client is talking to the

legitimate server (not an impersonator)
■ The server must prove that it owns the private

key corresponding to the public key in the
certificate

○ Give the client and server a shared secret
■ An attacker should not be able to learn the

secret
■ This will help the client and the server secure

messages later

● Two approaches to sharing a premaster
secret: RSA or Diffie-Hellman (DHE)

Client Server

Certificate

ServerHello

ClientHello

37

TLS Handshake Step 3: Premaster Secret (RSA)
● The client randomly generates a premaster secret

(PS)
● The client encrypts PS with the server’s public key

and sends it to the server
○ The client knows the server’s public key from

the certificate
● The server decrypts the premaster secret
● The client and server now share a secret

○ Recall RSA encryption: Nobody except the
legitimate server can decrypt the premaster
secret

○ Proves that the server owns the private key
(otherwise, it could not decrypt PS)

Client Server

Certificate

{PS}Kserver

ServerHello

ClientHello

38

TLS Handshake Step 3: Premaster Secret (DHE)
● The server generates a secret a and computes

ga mod p
● The server signs ga mod p with its private key

and sends the message and signature
● The client verifies the signature

○ Proves that the server owns the private key
● The client generates a secret b and computes

gb mod p
● The client and server now share a premaster

secret: gab mod p
○ Recall Diffie-Hellman: an attacker cannot

compute gab mod p

Client Server

Certificate

{ga mod p}K-1server

gb mod p

39

TLS Handshake Step 4: Derive Symmetric Keys

● The server and client each derive symmetric
keys from RB, RS, and PS
○ Usually derived by seeding a PRNG with the

three values
○ Changing any of the values results in different

symmetric keys

● Four symmetric keys are derived
○ CB: For encrypting client-to-server messages
○ CS: For encrypting server-to-client messages
○ IB: For MACing client-to-server messages
○ IS: For MACing server-to-client messages
○ Note: Both client and server know all four keys

Client Server

{ga mod p}K-1server

gb mod p

{PS}Kserver

or

Comput
e keys

Comput
e keys

40

TLS Handshake Step 5: Exchange MACs

● The server and client exchange MACs on
all the messages of the handshake so far
○ Recall MACs: Any tampering on the

handshake will be detected

Client Server

Comput
e keys

Comput
e keys

MAC(IB, steps 1-4)

MAC(IS, steps 1-4)

41

TLS Handshake Step 6: Send Messages

● Messages can now be sent securely
○ Encrypted then MAC’d
○ Note: TLS uses Authenticate-then-encrypt,

even though encrypt-then-Authenticate is
generally considered better.

Client Server

Comput
e keys

Comput
e keys

MAC(IB, steps 1-4)

MAC(IS, steps 1-4)

{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

42

TLS: Talking to the Legitimate Server
● How can we be sure we are talking to the

legitimate server?
○ The server sent its certificate, so we know the

server’s public key

○ The server proved that it owns the
corresponding private key
■ RSA: The server decrypted the PS
■ DHE: The server signed its half of the exchange

● An attacker impersonating the server would
not have the server’s private key (assuming
they have not compromised the server)

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

43

TLS: Securing Messages

● How can we be sure that network attackers
can’t read or tamper with our messages?

● The attacker doesn’t know PS
○ RSA: PS was encrypted with the server’s public key
○ DHE: An attacker cannot learn the Diffie-Hellman

secret

● The symmetric keys are derived from PS
○ The attacker doesn’t know the symmetric keys used

to encrypt and MAC messages

● Encryption and MACs provide confidentiality
and integrity

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

44

TLS: Replay Attacks

● How can we be sure that the attacker hasn’t
replayed old messages from the current TLS
connection?

● Add record numbers in the encrypted TLS
message
○ Every message uses a unique record number
○ If the attacker replays a message, the record

number will be repeated
● TLS record numbers are not TCP sequence

numbers
○ Record numbers are encrypted and used for

security
○ Sequence numbers are unencrypted and used for

correctness, in the layer below

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Forward Secrecy

45

Forward Secrecy

● Forward secrecy: If an attacker records a connection now and compromises
secret values later, they cannot compromise the recorded connection

● RSA TLS: No forward secrecy is guaranteed
○ The adversary can record RB, RS, and the encrypted PS
○ If the adversary later compromises the server’s private key, they can decrypt PS and

derive the keys!

● DHE TLS: Guaranteed forward secrecy
○ Diffie-Hellman provides forward secrecy: PS is deleted after the TLS session is over, so

the adversary can’t learn the keys, even if they later compromise the server’s private
key

○ Note: Because the server’s Diffie-Hellman component is signed, the adversary can’t
MITM the Diffie-Hellman exchange without the server’s private key

46

TLS 1.3 Changes

● TLS 1.3: The latest version of the TLS protocol (2018)
● RSA no longer supported (only DHE)

○ Guarantees forward secrecy

● Performance optimization: The client sends gb mod p in ClientHello
○ If the server agrees to use DHE, the server sends ga mod p (with signature) in

ServerHello
○ Potentially saves two messages later in the handshake

● Eliminates attacks associated with the insecure MAC-then-encrypt
pattern.

47

TLS in Practice

48

TLS: Efficiency

● Public-key cryptography: Minor costs
○ Client and server must perform Diffie-Hellman key exchange or RSA

encryption/decryption

● Symmetric-key cryptography: Effectively free
○ Modern hardware has dedicated support for symmetric-key cryptography
○ Performance impact is negligible

● Latency: Extra waiting time before the first message
○ Must perform the entire TLS handshake before sending the first message

49

TLS Provides End-to-End Security

● TLS provides end-to-end security: Secure communication between the
two endpoints, with no need to trust intermediaries
○ Even if everybody between the client and the server is malicious, TLS provides a

secure communication channel
○ End-to-end security does not help if one of the endpoints is malicious (e.g.

communicating with a malicious server)
○ Example: An local network attacker (on-path) tries to read our Wi-Fi session, but

can’t read TLS messages
○ Example: A man-in-the-middle tries to inject TCP packets, but packets will be

rejected because the MAC won’t be correct
● Using TLS defends against most lower-level network attacks

50

TLS Does Not Provide Anonymity

● Anonymity: Hiding the client’s and server’s identities from attackers
● An attacker can figure out who is communicating with TLS

○ The certificate is sent during the TLS handshake, containing the server’s name
○ The client may also indicate the name of the server in the ClientHello (called

Server Name Indication, or SNI)
○ An attacker can see IP addresses and ports of the underlying IP and TCP

protocols

51

TLS Does Not Provide Availability

● Availability: Keeping the connection open in the face of attackers
● An attacker can stop a TLS connection

○ MITM can drop encrypted TLS packets
○ On-path attacker can still do RST injection to abort the underlying TCP

connection

● Result: A TLS connection can still be censored
○ The censor can block TLS connections

52

TLS for Applications

● Internet layering: TLS provides services to higher layers (the application layer)
● HTTPS: The HTTP protocol run over TLS

○ In contrast, HTTP runs over plain TCP, with no TLS added

● Other secure application-layer protocols besides HTTPS exist
○ Pretty much anything that runs over TCP can also run over TLS, since the bytestream

abstraction is maintained
○ Example: Email protocol can use the STARTTLS command to uses TLS to secure

communications

● TLS does not defend against application-layer vulnerabilities
○ Example: SQL injection, XSS, CSRF, and buffer overflow vulnerabilities in the application

are still exploitable over TLS
53

SSL Stripping Attacks
● Browsers often default to using unencrypted HTTP

○ If a user types google.com into the browser, the browser opens
http://www.google.com

○ To mitigate this, websites will often redirect from the HTTP to the HTTPS version of its
site

○ This requires the client to first receive the unprotected HTTP redirect response
● SSL stripping: Forcing a user to use unencrypted HTTP instead of HTTPS

○ A MITM attacker intercepts the first HTTP request and creates their own HTTPS
connection to the server

○ The user never receives a redirect to HTTPS, so it believes the site wants them to use
HTTP

○ Defense: HTTP Strict-Transport-Security (HSTS) header tells browsers to only access the
server with HTTPS

54

User Attacker ServerHTTP HTTPS

TLS in Browsers
● Original design:

○ When your browser communicates with a server over TLS, your browser displays a lock
icon

○ If TLS is not used, there is no lock icon
● What the lock icon means

○ Communication is encrypted (TLS guarantee)
○ You are talking to the legitimate server (TLS guarantee)
○ Any external images or scripts are also fetched over TLS

55

This website uses HTTP: no lock
icon

This website uses HTTPS: lock
icon

TLS in Browsers

● What users think the lock icon means
○ This website is trustworthy, no matter where the lock icon actually appears

● Attack: The attacker adds their own lock icon somewhere on the page
○ The user thinks they’re using TLS, but actually is not using TLS

● Attack: The user might be communicating with an attacker’s website
over TLS
○ The lock icon appears, but the user is actually vulnerable!

56

TLS in Browsers

● Modern design: Add a “not secure” icon to connections that don’t use TLS
○ Adds a signal on unencrypted sites
○ Encourages websites to stop supporting all unencrypted, HTTP traffic and redirect to

HTTPS

57

This website uses HTTP: insecure
icon

This website uses HTTPS: lock
icon

TLS Attack: PRNG Sabotage
● TLS with Diffie-Hellman

○ An attacker who learns the DHE secret a can derive the PS gab mod p (recall gb mod p is sent
over the channel)

○ An attacker who knows the PS can derive the symmetric keys (recall RC and RS are sent over the
channel)

● Use a PRNG to generate all random values
○ Includes the server DHE secret a and the client DHE secret b

● Attack: PRNG is sabotaged + no rollback resistance?
○ Threat: Attacker has compromised internal state of PRNG and can learn the next bit.
○ Rollback-Resistance: any previously-generated output of the pRNG should still be

computationally indistinguishable from random, even if the attacker knows the current internal
state of the PRNG

● Attack: See subsequent PRNG output and work backwards to learn the DHE secret
58

TLS 1.3: the new standard

• Several years of collaboration between industry and academia
• Standardized by IETF in

• Major differences:
• RSA key exchange removed: no passive decryption attacks

• Only secure DFH parameters allowed: no bad choices in parameters

• Handshake encrypted immediately after key exchange: limits metadata available to
eavesdropper

• Protocol downgrade protection: protects against being downgraded to prior
insecure versions

TLS 1.3: deployment difficulties

• Adoption slower than it should be.

“Despite widespread TLS 1.3 adoption, old and vulnerable protocols are being left
enabled. RSA handshakes are allowed by 52 percent of web servers, SSL v3 is
enabled on 2 percent of sites, and 2.5 percent of certificates had expired."

-f5.com

Major reasons
• HTTPS proxies: Reliance on RSA key exchange to make passive decryption and traffic

analysis easier. Removing RSA key exchange breaks these boxes

• MiTM hardware

• Bad implementations with hardcoded TLS versions. No way to update these L.

