
CS 88: Security and Privacy
15: MACs, Hash Functions, Diffie-Hellman Key Exchange

10-27-2022

slides adapted from Dave Levine, Jonathan Katz, Kevin Du



Symmetric Key Cryptography

Keep others from 
reading Alice’s messages/data

Confidentiality Block Ciphers

Limitations?
• what if Eve modifies the 

packet in transit?
• How do we share keys?



Scenarios and Goals

Keep others from undetectably 
tampering with Alice’s messages/data

Integrity Message Authentication Codes (MACs)





Symmetric Key Cryptography



Could we simply use symmetric key cryptography (i.e. block 
ciphers) to achieve integrity?

A. Yes
B. No
C. Maybe
D. Under some circumstances



General adversarial goals

• Total Break: Adversary is able to fund the secret jey for signing and forge any signature 
of any message

• Selective forgery: Adversary is able to create valid signatures on a message chosen by 
someone else, with a significant probability. 

• Existential Forgery: Adversary can create a pair of (message, signature) such that the 
signature of the message is valid. 

• Ciphertext only Attack: Adversary knows only the verification function 
• Known Plaintext Attack: Adversary knows a list of messages previously signed by Alice
• Chosen Plaintext Attack: Adversary can choose what messages they want Alice to sign, 

and knows both the smessage and the corresponding signature



Attacker Goal: Existential Forgery





Hash Function Properties



Authenticated Encryption: Secrecy + Integrity

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, m) = t

Dec(k1, c) = m
Verify(k2, m, t) = 1?

We have seen how we can achieve two independent goals: encryption and authentication. 
How about putting them together?

Encrypt and Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic



Encrypt then authenticate

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, c) = t

Verify(k2, c, t) = 1?
Dec(k1, c) = m

We have seen how we can achieve two independent goals: encryption and authentication. 
How about putting them together?

Encrypt then Authenticate: Is it secure? A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic



Encrypt then authenticate

k1, k2 k1, k2

m
Enc(k1, m) = c
Mac(k2, c) = t

Verify(k2, c, t) = 1?
Dec(k1, c) = m

We have seen how we can achieve two independent goals: encryption and authentication. 
How about putting them together?

Encrypt then Authenticate is it secure?
Yes! If Enc is CPA seucre and MAC is secure.

Bonus: This is actually now CCA secure!



Secure Sessions: Consider parties who wish to communicate 
securely over the course of a session using authenticated 
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state. 

A. Yes
B. No



Secure Sessions: Consider parties who wish to communicate 
securely over the course of a session using authenticated 
encryption. Are they immune to the following attacks?

• Securely = secrecy and integrity
• Session = period of time over which parties are willing to maintain state. 



Symmetric Key Cryptography



Next

Symmetric Key Cryptography





Asymmetric/Public-key Cryptography

• main insight: separate keys for different functions

• Keys come in pairs, and are related to each other by a specific algorithm. 

• Public key (PK): used to encrypt or verify signatures

• Private key (SK): used to decrypt and sign

• Encryption and decryption are inverse operations

• Secrecy: ciphertext reveals nothing about the plaintext

• computationally hard to decrypt in polynomial time without key



Diffie-Helman Key Exchange











Fix: Need to authenticate messages



Computational complexity for integer problems

• Integer multiplication is efficient to compute

• There is no known polynomial-time algorithm for general purpose 
factoring. 

• Efficient factoring algorithms for many types of integers. Easy to find 
small factors of random integers. 

• Modular exponentiation is efficient to compute

• Modular inverses are efficient to compute



Textbook RSA Encryption

Public Key pk
N = pq modulus
e encryption exponent

Secret key sk
p, q primes
d decryption exponent
d = e-1 mod (p-1)(q-1) = e-1 mod 𝛷(N)

pk = (N, e)

c = EncPK(m) = me mod N
d = DecSK(c) = cd mod N



RSA Security

• Best algorithm to break RSA: Factor N and compute d

• Factoring is not efficient in general

• Current key size recommendations: N >= 2048 bits

• Do not implement this yourself. Factoring is hard only for some 
integers, and textbook RSA is insecure.





Shortcomings of symmetric key



Shortcomings of symmetric key



Shortcomings of symmetric key



Trusted Third Party



Trusted Third Party



Trusted Third Party



Trusted Third Party






























































