CS 88: Security and Privacy

15: MACs, Hash Functions, Diffie-Hellman Key Exchange
10-27-2022

slides adapted from Dave Levine, Jonathan Katz, Kevin Du

GRS | i
SWARTHMORE COLLEGE

Symmetric Key Cryptography

Alice Bob

R<t-R R

Public network

Confidentiality ~ Keep others from Block Ciphers

reading Alice’s messages/data
Limitations?
 what if Eve modifies the
packet in transit?

* How do we share keys?

Scenarios and Goals

Keep others from undetectably Message Authentication Codes (MACs)

Integrit
Brity tampering with Alice’s messages/data

BLACKBOX #2:
MESSAGE AUTHENTICATION CODE (MAC)

Symmetric Key Cryptography

CONFIDENTIALITY

Block ciphers
Deterministic = use IVs
Fixed block size = use encryption “modes”

INTEGRITY

Message Authentication Codes (MACs)

Send (message, tag) pairs
Verify that they match

R——1
K —> K
]

Could we simply use symmetric key cryptography (i.e. block
ciphers) to achieve integrity?

CONFIDENTIALITY

Block ciphers
Deterministic = use IVs
Fixed block size = use encryption “modes”

A. Yes
B. No
INTEGRITY C. Maybe
Message Authentication Codes (MACs) D. Under some circumstances

Send (message, tag) pairs
Verify that they match

R——1R
K — K
]

General adversarial goals

* Total Break: Adversary is able to fund the secret jey for signing and forge any signature
of any message

* Selective forgery: Adversary is able to create valid signatures on a message chosen by
someone else, with a significant probability.

e Existential Forgery: Adversary can create a pair of (message, signature) such that the
signature of the message is valid.

e Ciphertext only Attack: Adversary knows only the verification function

 Known Plaintext Attack: Adversary knows a list of messages previously signed by Alice

* Chosen Plaintext Attack: Adversary can choose what messages they want Alice to sign,
and knows both the smessage and the corresponding signature

Attacker Goal: Existential Forgery

e A MAC is secure if an attacker cannot demonstrate an

existential forgery despite being able to perform a chosen
plaintext attack:

* Chose plaintext:
e Attacker gets to choose m1, m2, m3, ...

e And in return gets a properly computed t1, t2, t3, ...

e Existential forgery:
e Construct a new (m,t) pair such that Vfy(k, m, t) =Y

BLACKBOX #3:
HASH FUNCTIONS

Hash Function Properties
* Very fast to compute

* Takes arbitrarily-sized inputs, returns fixed-sized output

® Pre-image resistant:
Given H(m), hard to determine m

e Collision resistant
Given m and H(m), hard to find m’# m s.t. Him) = H(m")

Good hash functions: SHA family (SHA-256, SHA-512, ...)

Authenticated Encryption: Secrecy + Integrity

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

c, t
k1, k2 x < x > 8k1, k2

m
Enc(kl, m) = ¢ Dec(kl, ¢) = m
Mac(k2, m) = t Verify(k2, m, t) = 17

A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Encrypt and Authenticate: Is it secure?

Encrypt then authenticate

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

c, t
k1, k2 x < x > 8k1, k2

m
Enc(kl, m) = ¢ Verify(k2, c, t) = 1?
Mac(k2, c) =t Dec(kl, ¢) = m

A. Yes, encryption is randomized with proper K, IV
B. No the tag might leak information
C. No the MAC is deterministic

Encrypt then Authenticate: Is it secure?

Encrypt then authenticate

We have seen how we can achieve two independent goals: encryption and authentication.
How about putting them together?

c, t
k1, k2 x < > Bkl, k2
,]

Enc(kl, m)
Mac(k2, c)

C Verify(k2, c, t) =17
Dec(kl, c) = m

i
‘—'-

Encrypt then Authenticate is it secure? Bonus: This is actually now CCA secure!

Yes! If Enc is CPA seucre and MAC is secure.

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

» Securely = secrecy and integrity

e Session = period of time over which parties are willing to maintain state.

- Enc,(m,) _ - Enc,(m,) :
@ T ' @ T E U_,
C R Lmmo o g
k "”5\53: = . Enc,(m,) >

Enc,(m,) Enc,(m,) A. Yes

Ve %k

——

—

Secure Sessions: Consider parties who wish to communicate
securely over the course of a session using authenticated
encryption. Are they immune to the following attacks?

» Securely = secrecy and integrity

e Session = period of time over which parties are willing to maintain state.

Ency,(m,) Enc,(m,)

% ~ R
o \\‘L Enck(mz) Ean(ml) ﬂm ‘ \‘\L Enck(mz) @Q
k =& 1L = ‘ Enc,(m,)
Enc,(m,) Enc,(m,) | Enc,(“Bob”| m, [1)
A/ Ency(m,) >< Enc,(m,) m Enc,(“Bob” | m, | 2) @
WL (m, dmy) | B k 12, g
o — -

——

—

Enc (“Alice” | m, | 1) &

Symmetric Key Cryptography

CONFIDENTIALITY

Block ciphers
Deterministic = use IVs
Fixed block size = use encryption “modes”

INTEGRITY

Message Authentication Codes (MACs)

Send (message, tag) pairs
Verify that they match

R——1
K —> K
]

Symmetric Key Cryptography

b ¢ CONFIDENTIALITY
Block ciphers
K — K— Deterministic = use IVs
Fixed block size = use encryption “modes”
C m

m ¢ INTEGRITY
Message Authentication Codes (MACs)
K— K— Send (message, tag) pairs

Verify that they match
Next
How do we establish K? o &
_ K — K
How do we know with whom x
we are communicating?

BLACKBOX #4:
DIFFIE HELLMAN KEY ESTABLISHMENT

Asymmetric/Public-key Cryptography

* main insight: separate keys for different functions

* Keys come in pairs, and are related to each other by a specific algorithm.
e Public key (PK): used to encrypt or verify signatures

* Private key (SK): used to decrypt and sign

* Encryption and decryption are inverse operations

* Secrecy: ciphertext reveals nothing about the plaintext

e computationally hard to decrypt in polynomial time without key

Diffie-Helman Key Exchange

x mod N

g is a generator of mod N if
{1, 2, ..., N-1} = {g8 mod N, gl mod N, ..., gN2mod N}

N=5,g=3
30mod5=1 3'mod5=3 32mod5=4 33mod5=2

Given x and g, it is efficient to compute
g* mod N

Given g and g%, it is efficient to compute x
(simply take log, g*)

Given g and gx mod N it is infeasible to compute x
Discrete log problem

Ren
g*mod N N b
gt mod N &
gemod N

Public knowledge: g and N

a g N
gtmod N

Pick random a
gemod N
o

gb mod N Pick random b

G
Compute (g> mod N)« =(gab mod N) Compute (g mod N)b =(gab mod N)

Shared secret: This is the key

) YR

gemod N
gt mod N

(gab mod N)

Note that just multiplying g and g won’t suffice:
g?modN » gtmod N = getbmod N

Key property:
An eavesdropper cannot infer the shared secret (ge).

But what about active intermediaries?

) ¥R

gemod N
gdmod N

(gab mod N)

Given g and g mod N it is infeasible to compute x
Discrete log problem

Note that just multiplying g¢ and g® won’t suffice:
g°modN * gmod N = getbmod N

Key property:
An eavesdropper cannot infer the shared secret (g).

But what about active intermediaries?

The attacker can interpose between the two communicating parties
and insert, delete, and modify messages.

‘thinks he is talking to 8
8thinks he is talking to !

Pick random a Pick random x Pick random
P
‘ -
grmod N g'mod N
(gﬂx mod N) (g * mod N)
‘thinks this is his 8thinks this is his
shared key with shared key with

The attacker can now eavesdrop on the conversation.
Key property: Diffie-Hellman is not resilient to a MITM attack

The attacker can interpose between the two communicating parties
and insert, delete, and modify messages.

‘thinks he is talking to 8
8thinks he is talking to !

Pick random a Pick random x Pick random
P
‘ -
grmod N g'mod N
(gﬂx mod N) (g * mod N)
‘thinks this is his 8thinks this is his
shared key with shared key with

The attacker can now eavesdrop on the conversation.
Key property: Diffie-Hellman is not resilient to a MITM attack

Fix: Need to authenticate messages

Computational complexity for integer problems

* Integer multiplication is efficient to compute

* There is no known polynomial-time algorithm for general purpose

factoring.

* Efficient factoring algorithms for many types of integers. EFasy to find

small factors of random integers.
* Modular exponentiation is efficient to compute

* Modular inverses are efficient to compute

Textbook RSA Encryption

Public Key pk
N = pq modulus

e encryption exponent

Secret key sk

p, g primes

d decrypﬁon exponent

d =

el mod (p-1)(g-1) = el mod @(N)

(N e)

C= EncPK(m)

me mod N

d = Decg(c) =c® mod N

RSA Security

* Best algorithm to break RSA: Factor N and compute d
* Factoring is not efficient in general
* Current key size recommendations: N >= 2048 bits

* Do not implement this yourself. Factoring is hard only for some
integers, and textbook RSA is insecure.

TO FIXTHIS PROBLEM WE NEED. ..

BLACKBOX #3:
PUBLIC KEY CRYPTOGRAPHY

Shortcomings of symmetric key

§Establlsh|ng a pairwise key :
:requires a key exchange, :
:which requires both parties :
K K :tobe online :

Issue #1: Requires pairwise key exchanges
o

13‘*
File downloads 888 x Email / chat
Q>R

One-to-many. All-to-all:
O(N) key O(N2) key
exchanges exchanges

:Establishing a pairwise key :

ng ‘requires a key exchange, :
:which requires both parties :

K K :to be online

Issue #1: Requires pairwise key exchanges

Blue user uploads a

888 document, then goes
File downloads x 888 offline (e.g., forever)

Later, a yellow user wants
to get a copy; how can

it know the copy is really
from the blue user?

One-to-many:
O(N) key
exchanges

Shortcomings of symmetric key

:Establishing a pairwise key :
24_,8 :requires a key exchange, :
:which requires both parties :
K K itobe online :

Issue #3: How do you know to whom you’re talking?

Diffie-Hellman is resilient to eavesdropping,
but not tampering

32— - B—E—R

K K K1 Ki K2

Trusted Third Party

A protocol that solves this with trust

Trent: A trusted third party

X
x‘/ \‘g

Trusted Third Party

A protocol that solves this with trust

Trent: A trusted third party

AT KBT\A
Alice x 8 Bob

Kar KgT

1. Everybody establishes a pairwise key with Trent
Good: O(N) key exchanges

Trusted Third Party

A protocol that solves this with trust

Trent: A frusted third party

E(Kar, msg || to:Bob) x
AT K'Bx
Alice x 8 Bob

Kar Ksr
1. Everybody establishes a pairwise key with Trent
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

Trusted Third Party

A protocol that solves this with trust

Trent: A trusted third party

E(Kar, msg || to:Bob) x E(Kar, msg || from:Alice)
AT KA
Alice x 8 Bob

Kar Ksr

1. Everybody establishes a pairwise key with Trent
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

Bad: All messages get sent through Trent

What are we trusting Trent not to do?

(Oh wow ‘msg”!

E(Kar, msg || to:Bob) (Ker, msg || from:Alice)
/KAT A
Bob

Allce

Kar KeT

1. Do not read messages

What are we trusting Trent not to do?

E(Kar, msg || to:Bob) x E(Ksr, msg’ || from:Alice)
AT KA
Alice x 8 Bob

Kar KsT

1. Do not read messages
2. Do not alter messages

What are we trusting Trent not to do?

...nothing... x E(Ker, msg’ || from:Alice)
AT KBT\‘
Alice x 8 Bob

Kar KeT

1. Do not read messages
2. Do not alter messages
3. Do not forge messages

What are we trusting Trent not to do?

E(Kar, msqg || to:Bobi/v \
Alice x 8 Bob

Kar KeT

1. Do not read messages

2. Do not alter messages

3. Do not forge messages
4. Do not go offline

Public key encryption

A public key encryption scheme comprises three algorithms

Key generation G Correctness
— PK = public key D(SK, E(PK, m)) = m
— SK = secret key

Encryption E(PK, m) rit
— cipher text ¢ E(PK, m) should appear random
(small change to (PK,m) leads
Decryption D(SK, c) to large changes to c)

— original msg E() should approximate a one-way

trapdoor function: cannot invert
without access to SK

Protocols with public key encryption
Goal: deliver a confidential message

Symmetric key | 8 Generate public/private
key pair (PK,SK)
Email / chat
8 Annouce PK publicly
> on website, in newspaper, ...
/ % (pPap)
8\ /8 Obtain PK 8
08 Send ¢ = E(PK, msg)
All-to-all: :
O(N?) key 8 Decrypt D(SK, c) = msg
exchanges :

O(N) keys in total

Overcoming fixed message sizes

Encryption E(PK, msg)
e |Inputs
* Public key PK

Like block ciphers,

wl}f;edj—zfzepmsg o but there are not
« OutpUts: a cipher text ¢ modes” of public

. key encryption
same size as msg y yp

Public key operations are slooooow!

Symmetric key operations are fast

Hybrid encryption

8 Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey Compute Cmsg = €(K, msQ)
Public key Compute ck = E(PK, K)

Send ck ” Cmsg

8 Decrypt D(SK, ck) = K Public key
Decrypt d(K, Cmsg) = msg ~ Symm key

Hybrid encryption
Obtain PK 8

Generate symmetric key K

Compute cmsg = €(K, msQg)
Compute ck = E(PK, K)

Send ck ” Cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key

Protocols with public key cryptography

Goal: determine from whom a message came

Symmetric key

File down/oads

8 é AfA0A

One-to- many
O(N) key
exchanges

Digital signatures

A digital signature scheme comprises two algorithms

Signing function San(SK, m) This is a randomized algorithm

e Inputs

e Secret key SK

* Fixed-length message
» Qutputs: a signature s

(nondeterministic output)

SK a.k.a. “Signing key”

Only one person can sign with
a given (PK,SK) pair

Verification function Vfy(PK, m, s)

* Inputs Deterministic algorithm

* Public key PK
 Message and signature
e Qutputs: Yes/No if valid (m,s)

Anyone with the PK
can verify

Digital signatures

A digital signature scheme comprises two algorithms

Signing Sgn(SK, m) Verification Vfy(PK, m, s)
— a signature s — Yes/No if valid (m,s)

Correctness
Viy(PK, m, Sgn(SK, m)) = Yes

Security
Same as with MACs: even after
a chosen plaintext attack, the
attacker cannot demonstrate an

existential forgery

Protocols with digital signatures

Goal: determine from whom a message came

Symmetric key Generate public/private

File down/oads key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, ...
8 888 Compute sig = Sgn(SK, msQ)
Publish msg || sig

One-to- many can now go offline!
O(N) key :

exchanges

o —

Digital signature properties

Authenticity

Integrity

Non-repudiation

Bob can prove that a message
signed by Alice is truly from Alice
(even without a pairwise key)

Bob can prove that no one has
tampered with a signed message

Once Alice signs a message, she
cannot subsequently claim she
did not sign that message

RECALL OUR PROBLEM WITH DIFFIE-HELLMAN

ooo

MAN-IN-THE-MIDDLE (MITM) ATTACKS The two Comrr.lunlcatmg parties
The attackercan imerpose besween the awo communicaimg paries. | thought, but did not confirm, that they

g% were talking to one another.

Pick random a Pick random x Pick random

x‘ pmodn ! o " 8 Therefore, they were vulnerable to
grmod N MITM attacks.

g modN

g2 mod N
‘rluuks this is his 81}”.,&(this is his
8 d key with ‘

shared key with shared

Certificates allow us to verify with
whom we are communicating.

The attacker can now cavesdrop on the conversation.
Key property: Riffie-Hellman is not resilient to a MITM artack

We will solve this by incorporating public key cryptography

Back to authentlcatlon

................................... %

x Generate public/private key : HOW can we know it was 5
pair (PK,SK); publicize PK

E(Kar, msg || to:Bob) x E(Ksr, msg || from:Alice)
/KAT KA
Alice x 8 Bob

Kar KeT

Can we achieve authentication
without Trent in the middle of every message?

Authentication with public keys

1. Trent’'s public key is widely
Trent x (PKr, SKr) disseminated (pre-installed in
browsers/operating systems)

I Trent vets Alice

2. Alice generates a public/private
Al) PKr key pair and asks Trent to bind her
' B (PKa, SKa) PKa to her identity

3. Trent signs a message (with SKr):

PK “The owner of the secret key
Bob 8 !

corresponding to PKa is Alice”

'his message + sig = Certifi

Authentication with public keys

1. Trent’s public key is widely
Trent x (PKr, SKr) disseminated (pre-installed in
browsers/operating systems)

Trent vets Alice

2. Alice generates a public/private

Ali PKr key pair and asks Trent to bind her
ice (PKa, SKa) P to her identity
Alice = PKx

3. Trent signs a message (with SKr):

“The owner of the secret key
corresponding to PKx is Alice”

Bob 8 PK+

[his message + sig = Certificat:

Authentication with public keys

Trent x (PKr, SKfr)

. @ PKr
Alice B (PKa, SKa)

Alice = PK

Bob 8 PKr
‘AIice = PKa |

4. Alice makes her certificate
publicly available
(or Bob simply asks for it)

5. Bob vern‘les the certificate

: |f Bob trusts Trent, then :

:Bob trusts that he properly:

; vetted Alice, and thus ;
that her public key is PKa:

6. Bob (via hybrid encryption)
sends a message to Alice
using her public key PKa

Authentication with public keys

Trent x (PKrt, SKry) Properties

Trent need be online only
when giving out certificates,
not any time users want to

Trent vets Alice

Alice :‘i—-z:" PKr communicate with one another
B (PKa, SKa)
'Alice = PK, Alice and Bob can communicate

In an authenticated manner
without having to go through Trent

Bob 8 PK+t
Alice = PK |

Authentication with public keys

Trust assumptions from our
symmetric key protocol:

Trent x (PKr, SKr)

1. Do not read messages

Trent vets Alice 2. Do not alter messages
3. Do not forge messages
Ali PKr 4. Do not go offline
¢ A (PKa, SKa)
l Alice = PKx ‘ Trust assumptions in this
public key protocol:
Bob 8 PK+ 1. Correctly vet us.ers
Alice = PKa (Some more in practice...)

Certificate revocation

3. Trent signs a message (with SKr):

“The owner of the secret key
corresponding to PKa is Alice”

This message + sig = Certificate

Put another way:
“The only person who knows SKa is Alice”

What happens if Alice’s key gets compromised?
(Stolen, accidentally revealed, ...)

Certificate revocation
Trent x (PK7, SK7)

Please revoke
my certificate
(ID #3912...) “Certificate ID #3912... is

no longer valid, as of April 5, ...”
Alice x

Trent signs a message (with SKr):

Certificate revocation
Trent x (PKr, SK7)

Please revoke

my certificate
(ID #3912...) “Certificate ID #3912... is
no longer valid, as of April 5, ...”

Trent signs a message (with SKr):

Bob obtains revocation information
Bob 8

Obtaining revocation data

Certificate Revocation Lists (CRLS)

A (often large) signed list of revocations

Trent x

“Certificate ID #3912... is
no longer valid, as of April 5, ...”

Browsers and OSes

occasionally download CRLs

so it takes time & bandwidth

Disincentive: CRLs can be large,
Bob 8

Result: delayed days/weeks/forever

Obtaining revocation data

Online Certificate Status Protocol (OCSP)

Browsers and OSes perform OCSP checks
on-demand (when verifying the certificate)

|s certificate ID #3912... still valid?
Bob 8 > x Trent
<

“Certificate ID #3912... is
still longer valid, as of April 5, ...” SK+

Disincentive: Still delays the initial
validation of the certificate (can increase
webpage load time)

Obtaining revocation data

OCSP Stapling

Websites issue OCSP requests,
iInclude responses in initial handshake

® |s certificate ID #3912... still valid?
Alice x > x Trent
£ <

“Certificate ID #3912... is
still longer valid, as of April 5, ...” SKr

Alice forwards this to Bob along with
the certificate when they first
start to communicate

Certificate revocation responsibilities

@ Alice’s responsibility:
/\ Request revocations
Trent’s responsibility:
Make revocations publicly available

8 Bob’s responsibility:
Check for revocations

Certificates in the wild

The lock icon indicates that the browser was able to
authenticate the other end, i.e., validate its certificate

g_[.tj https://www.wellsfargo.com

www.wellsfargo.com 54
Idemtity verified
{4 https://www.wellsfargo.com],,
. & : Permissions Connection 0
o,
The identity of this website has been 1
9 verified by VeriSign Class 3 International i
£ Bank of America Corporation [US] https://www.bankofamerica.com Server CA - G3 but does not have public

audit records

Centificate Information

Ld- A

%
ﬂ Your connection todwe. wellstargo.com is

encrypted with obsolete cryptography.

15 |

The connection uses TLS 1.2,

The connection is encrypted using
RC4_128, with SHA1 for message
authentication and RSA as the key
exchange mechanism.

ke

Site information
You first visited this site on Jan 18, 2015.

h mean?

Y https://www.wellsfargo.com

£ VeriSign Class 3 Public Primary Certification Authority - G5 f

L«] VeriSign Class 3 International Server CA - G3 certificate c hai n
“ www.wellsfargo.com

www.wellsfargo.com

Issued by: VeriSign Class 3 International Server CA - G3
- Expires: Saturday, November 14, 2015 at 6:59:59 PM Eastern

o o s contons s Subject (who owns the

s5um v Details
.
- public key)
Country US
- State/Province California
Locality San Francisco

g Organization Wells Fargo and Company cOmmon name: the

Organizational Unit DCT-PSG-ISG

- I URL of the subject

Country US
Organization VeriSign, Inc.

OrpencaionstUnk Vg Tt et Issuer (who verified the

Organizational Unit Terms of use at hitps.//www.verisign.com/rpa ()10

é Common Name VeriSign Class 3 International Server CA - G3 identity and Signed thiS

' -— certificate)
DAIIK WIICTEVET 111IT€ TaKes you

