CS 88: Security and Privacy

13: Symmetric Key Cryptography 10-20-2022
slides adapted from Dave Levine, Jonathan Katz, Kevin Du

Multiple message secrecy

We are not going to formally define a notion of multiple-message secrecy

- Instead, define something stronger: security against chosen-plaintext attacks (CPA-security)
- minimal notion of security an encryption scheme should satisfy

Security against Chosen Plaintext Attack: Impossible?

It really is a problem if an attacker can tell when the same message is encrypted twice!
This attack only works if encryption is deterministic!

Random Functions

- Functions map from some set X to a set $F(X)=Y$.
- (think of this mapping as a hash table mapping from $x->y$)
- Func c_{n} : all mappings from $X:\{0,1\}^{n}->F(X)=Y:\{0,1\}^{n}$
- i.e., for all input bit strings of length n, there is a mapping to an output bit string also of length n
- all possible mappings? $2^{n .\left(2^{\wedge} n\right)!!}$ astronomically large!

Random Functions

Out of all possible functions between X and Y we choose one uniformly at random.

- e.g. for a 2 bit string mappings between $X:\{0,1\}^{2}$ and $Y:\{0,1\}^{2}$
- one possible mapping that we could choose:

x	00	01	10	11
$F(x)$	01	11	00	10

Properties of function $F(X)$ chosen uniformly at random:

- for any given $x \in X$, the probability that $F(x)=y$ is $1 / 2^{n}$
- in our example example:
- given $x \in X$, the probability that $F(x)=1 / 2^{2}=1 / 4=0.25$
- $\mathrm{F}(\mathrm{x})$ property:
- if x changes by one bit to give x^{\prime} then
- $F\left(x^{\prime}\right)$ is completely independent of $F(x)$.

Random Permutations

- Variant of random function is random permutation
- treat them equivalently for our purposes.
- E.g.: random permutation over bit strings of length 2

Encryption: $\{0,1\}^{2}->\{0,1\}^{2}$

x
00
01
10
11

Important Property of the Random Permutation:
A permutation is invertible (bijective) function
Given $F(x)$ it is impossible to determine x without resorting to a brute force attack.

If $|X|$ is very large? brute force not possible by an efficient (probabilistic polynomial time) attacker.

What we have, ideally: Random Functions

Consider the set of all permutations $\mathrm{F}_{\mathrm{k}}: X \rightarrow X$

Think of X as all 128-bit bit strings

If you know k, then $F_{k}(x)$ is trivial to invert
If you don't know k, then $F_{k}(x)$ is one-way
One-way trapdoor function

What we have, ideally: Random Functions

Consider the set of all permutations $\mathrm{F}_{\mathrm{k}}: X \rightarrow X$

```
finlol12[3[4]
f2 [10 [2]3[4]
fix|: 77955118%...
```

Think of X as all
128-bit bit strings

Shared secret: index k chosen uniformly, at random

Without knowing k, Eve learns nothing about m

What we have, ideally: Random Functions

In essence, this protocol is saying "Let's use the ith permutation function" Infeasible to store all permutation functions - so instead cryptographers construct pseudorandom functions

What we have, approximately: Pseudo-Random Functions

In essence, this protocol is saying "Let's use the ith permutation function" Infeasible to store all permutation functions - so instead cryptographers construct pseudorandom functions

A Perfectly Secure Encryption Scheme

Regardless of any prior information the attacker has about the plaintext the ciphertext observed by the attacker should leak no additional information about the plaintext.

Alice can only observe one ciphertext going over the network

Computational Secrecy

Would be okay if a scheme leaked information with a tiny probability to eavesdroppers with bounded computational resources.

- Allowing security to fail with a tiny probability (negligible in key length n)
- how tiny is tiny? 2^{-60} : probability of an event occurring every 100 billion years!
- Only consider efficient attackers (bounded in polynomial time by key length)
- attackers that can brute-force the key space in bounded time.
- try testing 2^{112} keys? Would take a supercomputer since Big Bang!
- modern key space? 2^{128} or more!

Multiple message secrecy: Impossible?

It really is a problem if an attacker can tell when the same message is encrypted twice!
This attack only works if encryption is deterministic!

Random Permutations

- Variant of random function is random permutation
- treat them equivalently for our purposes.
- E.g.: random permutation over bit strings of length 2

Encryption: $\{0,1\}^{2}->\{0,1\}^{2}$

x
00
01
10
11

Important Property of the Random Permutation:
A permutation is invertible (bijective) function
Given $F(x)$ it is impossible to determine x without resorting to a brute force attack.

If $|X|$ is very large? brute force not possible by an efficient (probabilistic polynomial time) attacker.

What we have, ideally: Random Functions

Consider the set of all permutations $\mathrm{F}_{\mathrm{k}}: X \rightarrow X$

x
00
01
10
11

Without knowing k, Eve learns nothing about m
If you know k, then $F_{k}(x)$ is trivial to invert If you don't know k, then $F_{k}(x)$ is one-way

BLACKBOXES To this end, we'll cover several "blackboxes": what properties do they provide, and how can we responsibly put them together

Scenarios and Goals

Confidentiality
Keep others from
reading Alice's messages/data
Block Ciphers

Integrity

Authenticity
Keep others from undetectably
tampering with Alice's messages/data
Keep others from undetectably
impersonating Alice (keep her to her word too!)

Block Ciphers

ENCRYPTION

Encryption Function: $E:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}}->\{0,1\}^{\mathrm{n}}$
Fix the key K, then, $\mathrm{E}_{k}:\{0,1\}^{n}->\{0,1\}^{n}$

- plaintext size: n
- ciphertext size:n
E_{k} : permutation on n-bit strings.
- invertible (bijective function) given the key

Once the key is fixed: $E(k, m)$ is indistinguishable from a function chosen uniformly at random from all possible functions between block-sized binary strings.

Block Ciphers

ENCRYPTION

Once the key is fixed: $E(k, m)$ is indistinguishable from a function chosen uniformly at random from all possible functions between block-sized binary strings.

Attacker has no way of knowing which random function was chosen to permute the plaintext to the ciphertext

Block Ciphers

DECRYPTION

Attacker has no way of knowing which random function was chosen to permute the plaintext to the ciphertext

Block Ciphers

PROPERTY:

Block ciphers are deterministic
For a given m and K, $E(K, m)$ always returns the same c

PROPERTY: Small changes to the inputs cause big changes in the output
Confusion: Each bit of the ciphertext should depend on each bit of the key
Diffusion: Flipping a bit in m should flip each bit in c with $\operatorname{Pr}=1 / 2$

Kerckhoffs' principle

Problem \#1: Block Ciphers Are Deterministic

(PROPERTY:
Block ciphers are deterministic
For a given m and K, $E(K, m)$ always returns the same c

An eavesdropper could determine when messages are re-sent

A FIX:

Initialization Vector (nonce)

Random: Must send r with the message This is good if messages can be reordered

Counter: Don't need to send r; the receiver can infer it from the message number This is good if messages are delivered in-order

Problem \#2: Block Ciphers have fixed size

Fixed block size $m \times m$
If we want to encrypt a message larger than the block size (128 bits), we simply break up the message into block-size length pieces...

| m | $=$$m_{1}$ m_{2} m_{3} m_{4} | \ldots | m_{n} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

...and encrypt each block

But recall: it can be deterministic. We must choose good initialization vectors. How?

Modes of Encryption: Electronic Codebook Mode (ECB)

Electronic Codebook (ECB) mode encryption

Encryption:

inputs: plaintext: m, key: k, ciphertext: $c[i]=E(k, m[i])$

Decryption:
inputs: ciphertext: c, key: k,
spot the problem?
plaintext: $m[i]=D(k, c[i])$

ECB Mode
Encryption

Decryption

Plaintext

Same issue that led us to use
Initialization Vectors!

NEVER USE THE ECB MODE!

NEVER use ECB (but over 50\% of Android apps do)

Modes of Encryption: Cipher Block Chaining Mode (CBC)

Encryption
input: plaintext m,

\quad| key k, |
| :--- |
| initialization vector IV |

$\mathrm{c}[0]=\mathrm{IV}$
$\mathrm{c}[\mathrm{i}]=\mathrm{E}(\mathrm{k}, \mathrm{m}[\mathrm{i}] \oplus \mathrm{c}[\mathrm{i}-1])$ for $\mathrm{i}>=1$

Decryption input: ciphertext c,
key k,
initialization vector IV
$m[i]=D(k, c[i]) \oplus c[i-1]$

Ciphertext
पायायाय

Ciphertext

Modes of Encryption: Cipher Block Chaining Mode (CBC)

Security

Input to the Encryption algorithm at each step is extremely likely to be different from the previous step.

Performance

Encryption: Not Parallelizable
Decryption: Parallelizable recovering m[i] does not require m[i-1]. Only requires c[i-1] which is already known.

Ciphertext पायाПया

Modes of Encryption: Cipher Feedback Mode (CFB)

```
Encryption
input: plaintext m,
    key k,
    initialization vector IV
c[0] = IV
c[i] = E(k,c[i-1]) \oplusm[i] for i >= 1
```


(a) Cipher Feedback (CFB) mode encryption

```
Decryption
input: ciphertext c,
    key k,
    initialization vector IV
\(m[i]=E(k, c[i-1]) \oplus c[i]\)
```


(b) Cipher Feedback (CFB) mode decryption

Modes of Encryption: Cipher Feedback Mode (CFB)

Security:
$\mathrm{c}[\mathrm{i}]$!= $\mathrm{c}[\mathrm{j}]$ for $\mathrm{m}[\mathrm{i}]=\mathrm{m}[\mathrm{j}]$

Performance

Encryption: Still Not
Parallelizable
Decryption: Parallelizable recovering m[i] does not require m[i-1]. Only requires c[i-1] which is already known.

(a) Cipher Feedback (CFB) mode encryption

(b) Cipher Feedback (CFB) mode decryption

Original image

Encrypted using ECB mode

Modes other than ECB result in pseudo-randomness

Modes of Encryption: Counter Mode (CTR)

```
Encryption
input: plaintext m,
    key k,
    initialization vector IV
c[0] = IV
c[i] = E(k, IV+i]) \oplusm[i] for i >= 1
```


Decryption

input: ciphertext c,
key k,
initialization vector IV
$m[i]=E(k, I V+i) \oplus c[i]$

