
CS 88: Security and Privacy
13: Symmetric Key Cryptography

10-20-2022
slides adapted from Dave Levine, Jonathan Katz, Kevin Du

Multiple message secrecy

Ciphertext (c1, c2, c3..)

We are not going to formally define a notion of multiple-message secrecy
• Instead, define something stronger: security against chosen-plaintext

attacks (CPA-security)
• minimal notion of security an encryption scheme should satisfy

Security against Chosen Plaintext Attack: Impossible?

It really is a problem if an attacker can tell when the same message is
encrypted twice!
This attack only works if encryption is deterministic!

Enck(m1)

m

prob. of c0 ?

Enck(m0)

Enck(m0)

Random Functions

• Functions map from some set X to a set F(X) = Y.
• (think of this mapping as a hash table mapping from x -> y)

• Funcn: all mappings from X: {0, 1}n -> F(X)= Y:{0, 1}n

• i.e., for all input bit strings of length n, there is a mapping
to an output bit string also of length n

• all possible mappings? 2n.(2^n)!! astronomically large!

Random Functions

Out of all possible functions between X and Y we choose one uniformly at random.
• e.g. for a 2 bit string mappings between X: {0, 1}2 and Y: {0, 1}2
• one possible mapping that we could choose:

Properties of function F(X) chosen uniformly at random:
• for any given x ∈ X, the probability that F(x) = y is 1/2n

• in our example example:
• given x ∈ X, the probability that F(x) = 1/22 = ¼ = 0.25

• F(x) property:
• if x changes by one bit to give x’ then
• F(x’) is completely independent of F(x).

x 00 01 10 11

F(x) 01 11 00 10

Random Permutations
• Variant of random function is random permutation
• treat them equivalently for our purposes .

• E.g.: random permutation over bit strings of length 2
Encryption: {0, 1}2 -> {0, 1}2

x
00
01
10
11

F(x)
01
11
00
10

Important Property of the Random Permutation:
A permutation is invertible (bijective) function

Given F(x) it is impossible to determine x without resorting to a
brute force attack.

If |X| is very large? brute force not possible by an efficient
(probabilistic polynomial time) attacker.

What we have, ideally: Random Functions

Fk:

If you know k, then Fk(x) is trivial to invert

If you don’t know k, then Fk(x) is one-way

One-way trapdoor function

What we have, ideally: Random Functions

Fk:

k is our key!

Without knowing k, Eve learns nothing about m

Shared secret: index k chosen
uniformly, at random

k k
Fk(m)

What we have, ideally: Random Functions

In essence, this protocol is saying “Let’s use the ith permutation function”
Infeasible to store all permutation functions – so instead cryptographers
construct pseudorandom functions

Shared secret: index k chosen
uniformly, at random

k k
Fk(m)

k is our key!

Without knowing k, Eve learns nothing about m

What we have, approximately: Pseudo-Random Functions

In essence, this protocol is saying “Let’s use the ith permutation function”
Infeasible to store all permutation functions – so instead cryptographers
construct pseudorandom functions

Shared secret: index k chosen
uniformly, at random

k k
Fk(m)

k is our key!

Without knowing k, Eve learns nothing about m

A Perfectly Secure Encryption Scheme

Regardless of any prior information the attacker has about the plaintext
the ciphertext observed by the attacker

should leak no additional information about the plaintext.

Alice can only observe one ciphertext going over the network

Computational Secrecy

• Allowing security to fail with a tiny probability (negligible in key length n)

• how tiny is tiny? 2-60 : probability of an event occurring every 100 billion
years!

• Only consider efficient attackers (bounded in polynomial time by key length)

• attackers that can brute-force the key space in bounded time.

• try testing 2112 keys? Would take a supercomputer since Big Bang!

• modern key space? 2128 or more!

Would be okay if a scheme leaked information with a tiny probability to
eavesdroppers with bounded computational resources.

Multiple message secrecy: Impossible?

It really is a problem if an attacker can tell when the same message is
encrypted twice!
This attack only works if encryption is deterministic!

Enck(m1)

m

prob. of c0 ?

Enck(m0)

Enck(m0)

Random Permutations
• Variant of random function is random permutation
• treat them equivalently for our purposes .

• E.g.: random permutation over bit strings of length 2
Encryption: {0, 1}2 -> {0, 1}2

x
00
01
10
11

F(x)
01
11
00
10

Important Property of the Random Permutation:
A permutation is invertible (bijective) function

Given F(x) it is impossible to determine x without resorting to a
brute force attack.

If |X| is very large? brute force not possible by an efficient
(probabilistic polynomial time) attacker.

What we have, ideally: Random Functions

Fk:

k is our key!

Without knowing k, Eve learns nothing about m

Shared secret: index k chosen
uniformly, at random

k k
Fk(m)

If you know k, then Fk(x) is trivial to invert

If you don’t know k, then Fk(x) is one-way

x
00
01
10
11

F(x)
01
11
00
10

BLACKBOXES

Scenarios and Goals

Keep others from
reading Alice’s messages/data

Confidentiality Block Ciphers

Block Ciphers

Encryption Function: E: {0, 1}k x {0, 1}n -> {0, 1}n

Fix the key K, then, Ek: {0, 1}n -> {0, 1}n
• plaintext size: n
• ciphertext size:n
Ek: permutation on n-bit strings.
• invertible (bijective function) given the key

Once the key is fixed: E(k,m) is indistinguishable from a function chosen uniformly at
random from all possible functions between block-sized binary strings.

1

Block Ciphers

Once the key is fixed: E(k,m) is indistinguishable from a function chosen uniformly at
random from all possible functions between block-sized binary strings.

??

……..

Attacker has no way of knowing which random function was chosen to permute the
plaintext to the ciphertext

1 2 3

Block Ciphers

Inverse mapping of the permutation is the decryption
algorithm, given the key
Dk(Ek(M)) = M

without the key: best attack is a brute force exhaustive
search over the entire key space!

Attacker has no way of knowing which random function was chosen to permute the
plaintext to the ciphertext

Block Ciphers {0, 1}k x {0, 1}n -> {0, 1}n

Encryption and Decryption and Key Generation Algorithm are
publicly known. The only unknown is the shared secret key

Problem #1: Block Ciphers Are Deterministic

Also known as an Initialization
Vector or Nonce

Initialization Vector (nonce)

IV or r needs to be different (unpredictable) each time

Problem #2: Block Ciphers have fixed size

Fixed block size m

If we want to encrypt a message larger than the block size (128 bits), we simply break up the message into
block-size length pieces...

…and encrypt each block

But recall: it can be deterministic. We must choose good initialization vectors. How?

Modes of Encryption: Electronic Codebook Mode (ECB)

each block in AES
128 bits

m[0] m[1]

…..

m[n]

Encryption:
inputs: plaintext: m, key: k,
ciphertext: c[i] = E(k, m[i])

Decryption:
inputs: ciphertext: c, key: k,
plaintext: m[i] = D(k, c[i])

spot the problem?

ECB Mode

If two separate segments are
equal, m[i] = m[j].
Then Eve can detect this by
noting c[i] = c[j]

Same issue that led
us to use
Initialization Vectors!

NEVER USE THE
ECB MODE!

m[i] m[j]

Encryption

Decryption

Modes of Encryption: Cipher Block Chaining Mode (CBC)

input: plaintext m,
key k,
initialization vector IV

c[0] = IV
c[i] = E(k, m[i] ⨁c[i−1]) for i >= 1

input: ciphertext c,
key k,
initialization vector IV

m[i] = D(k, c[i]) ⨁c[i−1]

Encryption

Decryption

Modes of Encryption: Cipher Block Chaining Mode (CBC)

Encryption: Not
Parallelizable
Decryption: Parallelizable
recovering m[i] does not
require m[i-1]. Only requires
c[i-1] which is already
known.

Security

Performance

Input to the Encryption
algorithm at each step is
extremely likely to be
different from the previous
step.

Modes of Encryption: Cipher Feedback Mode (CFB)

input: plaintext m,
key k,
initialization vector IV

c[0] = IV
c[i] = E(k, c[i-1]) ⨁m[i] for i >= 1

input: ciphertext c,
key k,
initialization vector IV

m[i] = E(k, c[i-1]) ⨁c[i]

Encryption

Decryption

Doesn’t make use of the decryption function!

Modes of Encryption: Cipher Feedback Mode (CFB)

Doesn’t make use of the decryption function!

Encryption: Still Not
Parallelizable
Decryption: Parallelizable
recovering m[i] does not
require m[i-1]. Only requires
c[i-1] which is already
known.

Security:
c[i] != c[j] for m[i] = m[j]

Performance

Modes of Encryption: Counter Mode (CTR)

input: plaintext m,
key k,
initialization vector IV

c[0] = IV
c[i] = E(k, IV+i]) ⨁m[i] for i >= 1

input: ciphertext c,
key k,
initialization vector IV

m[i] = E(k, IV+i) ⨁c[i]

Encryption

Decryption

