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Modern Cryptography
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Design, analysis and implementation of mathematical techniques for 
securing information, systems and computation against adversarial 

attacks.



Modern Cryptography
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If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have

achieved it?



Modern Cryptography
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Importance of clear assumptions:
• allows researchers to validate assumptions
• comparison between schemes based on different assumptions
• re-adjust for weaknesses in assumptions

any new cryptographic construction should  be proven secure with respect 
to a specific definition, and a set of clearly stated assumptions



Scenarios and Goals

Keep others from 
reading Alice’s messages/data

Keep others from undetectably 
tampering with Alice’s messages/data

Keep others from undetectably 
impersonating Alice (keep her to her word too!)

Confidentiality

Integrity

Authenticity



Cryptography: Terms

Encryption   (E): The process of transforming a message so that its meaning is not obvious
Decryption  (D): The process of transforming an encrypted message back into its original form. 
Plaintext      (m):  Original, unencrypted form of a message
Ciphertext   (p):  The encrypted form of a message

Formal Notation: We seek a cryptosystem for which P = D (E (P))



Ceasar Cipher: Substitution Cipher
Plaintext letters replaced with letters fixed shift way in the alphabet. 

Example:
• Plaintext: HEY BRUTUS BRING A KNIFE TO THE PARTY.
• Ciphertext: KHB EUXWXV EULQJ D NQLIH WR WKH SDUWB
• Key Shift 3:
• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• DEFGHIJKLMNOPQRSTUVWXYZABC

• Encryption and Decryption 
are symmetric. 

• Key space? 
• 26 

• Attack shift ciphers?
• brute force



Monoalphabetic Substitution Cipher
• What is the key space? 

• 26
• Launching an attack?

• frequency analysis: the study of frequency of letters or groups of letters (grams). 
• Common letters:  T, A, E, I, O
• Common 2-letter combinations (bi-grams): TH, HE, IN, ER
• Common 3-letter combinations (tri-grams): THE, AND, ING. 



Encryption and Decryption and Key Generation Algorithm are 
publicly known. The only unknown is the shared secret key



Ceasar Cipher: Substitution Cipher
Plaintext letters replaced with letters fixed shift way in the alphabet. 

Lessons Learnt?
• Simple, exhaustive key search can be effective
• Key space needs to be large enough to prevent attack
• Use different substitutions to prevent frequency analysis



Vigenère Cipher (1596)

• Main weakness of monoalphabetic substitution ciphers:
• Each letter in the ciphertext corresponds to only one letter in 

the plaintext

• Polyalphabetic substitution cipher
• Given a key K = (k1, k2, …, km)
• Shift each letter p in the plaintext by ki, where i is modulo m

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CRYPTOGRAPHY
LUCK
NLAZEIIBLJJI

Plaintext
Key

Ciphertext
(Shift 11 20 2 10 11 20 2 11 …)LUCKLUCK



Kasisky Test Index of coincidence

• Repeating patterns (of length >2) in ciphertext are a tell
• Likely due to repeated plaintext encrypted under repeated key characters
• The distance is likely to be a multiple of the key length

T H E S U N A N D T H E M A N I N T H E M O O N

D P R Y E V N T N B U K W I A O X B U K W W B T

Plaintext
Key

Ciphertext
K I N G K I N G K I N G K I N G K I N G K I N G

Distance = 8



Vigenère Cipher (1596)

• Lessons learnt?
• As key length increases, letter frequency becomes more 

random
• If key never repeated, Vigenère wouldn’t be breakable!

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CRYPTOGRAPHY
LUCK
NLAZEIIBLJJI

Plaintext
Key

Ciphertext
(Shift 11 20 2 10 11 20 2 11 …)LUCKLUCK



One Time Pad (1920s)
• Fix vulnerability in Vigenère cipher: use very long keys

• Key is a random string: at least as long as the plaintext

• Plaintext: Message that is n bits long

• Key: {0, 1}n sequence of n bits chosen uniformly at 
random.

key

message

n bits

ciphertext

n bits

Å

n bits



Review: XOR
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0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

The XOR operator takes two 
bits and outputs one bit

Useful properties of XOR

x ⊕ 0 = x

x ⊕ x = 0

x ⊕ y = y ⊕ x

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

(x ⊕ y) ⊕ x = y



Review: XOR Algebra

Algebra works on XOR too
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y ⊕ 1 = 0 Goal: Solve for y

y ⊕ 1 ⊕ 1 = 0 ⊕ 1 XOR both sides by 1

y = 1 Simplify with 
identities



One-Time Pads: Key Generation
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

The key K is a randomly-chosen bitstring.

Recall: We are in the symmetric-key setting, so we’ll 
assume Alice and Bob both know this key.



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

The plaintext M is the bitstring 
that Alice wants to encrypt.

Idea: Use XOR to scramble up 
M with the bits of K.



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

1 1 1 1 1 1 0 0 0 0 1 1C

Encryption algorithm: XOR each bit of K
with the matching bit in M.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The ciphertext C is the encrypted 
bitstring that Alice sends to Bob over 
the insecure channel.



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

Bob receives the ciphertext C. Bob knows the 
key K. How does Bob recover M?



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

1 0 0 1 1 0 0 1 0 1 0 0M

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Decryption algorithm: XOR each bit of K
with the matching bit in C.
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any new cryptographic construction should  be proven secure with respect 
to a specific definition, and a set of clearly stated assumptions



Threat Models
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• Ciphertext-only attack: An attacker (Eve) observes ciphertext and 
nothing else 
• Can Eve observe more than one ciphertext? 
• this distinction can make a big difference!

Ciphertext (c)

Ciphertext: c



Threat Models
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• Known-Plaintext Attack: An attacker (Eve) observes ciphertext and 
knows underlying plaintext
• e.g., Alice: plaintext: Hello! ciphertext: 23asdf1941
• Bob: plaintext: Hello! ciphertext: 23asdf1941

Ciphertext (c)

Alice’s plaintext: Hello! 
ciphertext: 23asdf1941



Threat Models
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• Chosen-Plaintext Attack: 
• Observe one or more ciphertext, where plaintext is unknown
• Also observe ciphertext for plaintext of attacker’s choosing.

test attack

asdlkjwery

Attacker’s chosen 
plaintext: test attack

observed ciphertext
asdlkjwery



Threat Models
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• Chosen-Ciphertext Attack: 
• Attacker is able to get the parties to decrypt certain cipher texts of 

that attacker's choice.

top secret file

asdlkjweryAttacker’s chosen 
ciphertext: 
asdlkjwery

observed plaintext:
top secret attack



A Perfectly Secure Encryption Scheme

Regardless of any prior information the attacker has about the plaintext 
the ciphertext observed by the attacker 

should leak no additional information about the plaintext.

Alice can only observe one ciphertext going over the network



A Secure Encryption Scheme

An encryption scheme given by: (key gen alg., encryption alg, 
decryption alg.) over message space M is perfectly secure iff

∀ probability distribution over M
∀ message m ∈ M
∀ ciphertext c ∈ C for which Pr[C =c] > 0

we have
Pr[M =m | C=c] = Pr[M=m]



One Time Pad: Perfectly Secure?

• OTP achieves Perfect Secrecy
• Shannon or Information Theoretic Security
• Basic idea: ciphertext reveals no “additional information” about 

plaintext



Proving Perfect Security: One Time Pads

Problem Statement: 
• Suppose Alice has sent one of two messages M0 or M1, and Eve has 

no idea which was sent. 
• Eve tries to guess which was sent by looking at the ciphertext. 
To Show: 
• Eve’s probability of guessing correctly is ½
• This is no different than it would be if she had not intercepted the 

ciphertext at all.



Proving Perfect Security: One Time Pads
Alice randomly chooses a bit string ∈ {0, 1}n, and Alice sends the encryption of Mb. 
If Eve observes that the ciphertext has some specific value C, what is the conditional probability that 
b = the input bit string given her observation?



One Time Pad: Limitations

• The key is as long as the message 
• Only secure if each key is used to encrypt a single message 
• Parties must share keys of (total) length =  the (total) length of all the 

messages they might ever send!

key

message

n bits

ciphertext

n bits

Å

n bits



Using the same key twice?



Limitations of Perfect Security

• The key is as long as the message 
• Only secure if each key is used to encrypt a single message 

Limitations are not only of One Time Pads, but inherent to any 
perfectly secure encryption scheme.

Assumes the attacker as unlimited computational power

Regardless of any prior information the attacker has about the plaintext 
the ciphertext observed by the attacker should leak no additional 
information about the plaintext.



Computational Security/Secrecy

• Allowing security to fail with a tiny probability (negligible in key length n)

• how tiny is tiny? 2-60 : probability of an event occurring every 100 billion 
years!

• Only consider efficient attackers (bounded in polynomial time by key length)

• attackers that can brute-force the key space in bounded time. 

• try testing 2112 keys? Would take a supercomputer since Big Bang! 

• modern key space? 2128 or more!

Would be okay if a scheme leaked information with a tiny probability to 
eavesdroppers with bounded computational resources.



Computational Secrecy: One Time Pads

Key Insight: Randomness –
• something an adversary won’t know, can’t predict and can’t figure out. 



Randomness

Explicit Uses of Randomness:
• Generate secret cryptographic keys
• Generate random initialization vectors or nonces for encryption

Use cases
• Generate passwords for new users
• Shuffle the order of votes in an electronic voting machine
• Shuffle cards etc. (for online games)



What does “random” mean?

• What does “uniform” mean? 
• Which of the following is a uniform string? 
• 0101010101010101 
• 0010111011100110
• 0000000000000000 

• If we generate a uniform string, each of the above occurs with probability 
2-16 



What does “random” mean?

• “Randomness” is not a property of a string, but a property of a 
distribution. 

• The uniform distribution on n-bit strings is the distribution Un where
• Un(x) = 2-n for all x ∈ {0,1}n



What does “pseudorandom” mean?

• Informal: cannot be distinguished from uniform (i.e., random) 
• Which of the following is pseudorandom?
• 0101010101010101 
• 0010111011100110
• 0000000000000000 

• Pseudorandomness is a property of a distribution



How Random is “Random”?



C’s built-in rand() function

unsigned long int next = 1;
/* rand: return pseudo-random integer on 0…32767 */
int rand(void){

next = next * 11-3515245 + 12345;
return (unsigned int) (next/65536) % 32768;

}
/* srand: set seed for rand() */
void srand(unsigned int seed){

next = seed;
}

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.” -- John von Neumann 



Random-number generation

• Two steps:
1. Continually collect a “pool” of high-entropy (i.e., “unpredictable”) data 

from external inputs 
1. Delays between network events 
2. Hard-disk access times  
3. Keystroke/mouse movements 

2. When random bits are requested, process this data to generate a sequence 
of uniform, independent bits/bytes
• May “block” if insufficient entropy available

• Other… – Hardware random-number generator (e.g., Intel) 



How might we get “good” random numbers?

• For security applications, want “cryptographically secure pseudorandom numbers” 
• Libraries include cryptographically secure pseudorandom number generators (CSPRNG)

• Linux:
• /dev/random: blocking: waits for enough entropy
• /dev/urandom: nonblocking, possibly less entropy
• getrandom() – syscall! – by default blocking

• Internally:
• Entropy pool: gathered from multiple sources
• e.g.: mouse/keyboard/network timings

• Better idea:
• AMD/Intel’s on-chip random number generator: RDRAND
• Hopefully no hardware bugs!



Random-number generation



Pseudorandom (number) generators: PRG/PRNGs

• A PRG is an efficient, deterministic algorithm that expands a short, uniform seed 
into a longer, pseudorandom output
• Useful whenever you have a “small” number of true random bits, and want 

lots of “random looking” bits 

output: pseudorandom bits of length n, i.e., 
cannot be distinguished from truly 
random bits, by any efficient statistical test. 

seed: a small number of true random bits

G: deterministic polynomial time algorithm



Do PRNGs exist?

• We actually don’t know!
• Assume that there exist some functions G that are PRNG. 

output: pseudorandom bits of length n, i.e., 
cannot be distinguished from truly 
random bits, by any efficient statistical test. 

seed: a small number of true random bits

G: deterministic polynomial time algorithm



Applying Pseudo-randomness to the one-time pad



Single-message secrecy

Ciphertext (c)



Multiple message secrecy

Ciphertext (c1, c2, c3..)

We are not going to formally define a notion of multiple-message secrecy 
• Instead, define something stronger: security against chosen-plaintext 

attacks (CPA-security)  
• minimal notion of security an encryption scheme should satisfy



Security against Chosen Plaintext Attack: Impossible?

It really is a problem if an attacker can tell when the same message is 
encrypted twice!
This attack only works if encryption is deterministic!

Enck(m1)

m

prob. of c0 ?

Enck(m0)

Enck(m0)



Random Functions

• Functions map from some set X to a set F(X) = Y. 
• (think of this mapping as a hash table mapping from x -> y)

• Funcn: all mappings from X: {0, 1}n ->  F(X)= Y:{0, 1}n

• i.e., for all input bit strings of length n, there is a mapping 
to an output bit string also of length n

• all possible mappings? 2n.(2^n)!! astronomically large!



Random Functions

Out of all possible functions between X and Y we choose one uniformly at random. 
• e.g. for a 2 bit string mappings between X: {0, 1}2 and Y: {0, 1}2
• one possible mapping that we could choose:

Properties of function F(X) chosen uniformly at random:
• for any given x ∈ X, the probability that F(x) = y is 1/2n

• in our example example: 
• given x ∈ X, the probability that F(x) = 1/22 = ¼ = 0.25

• F(x) property:
• if x changes by one bit to give x’ then
• F(x’) is completely independent of F(x). 

x 00 01 10 11

F(x) 01 11 00 10



Random Permutations
• Variant of random function is random permutation
• treat them equivalently for our purposes .

• E.g.: random permutation over bit strings of length 2
Encryption: {0, 1}2 -> {0, 1}2

x
00
01
10
11

F(x)
01
11
00
10

Important Property of the Random Permutation:
A permutation is invertible (bijective) function

Given F(x) it is impossible to determine x without resorting to a 
brute force attack. 

If |X| is very large? brute force not possible by an efficient 
(probabilistic polynomial time) attacker. 



What we have, ideally: Random Functions

Fk:

If you know k, then Fk(x) is trivial to invert

If you don’t know k, then Fk(x) is one-way

most efficient attack is a brute force attack.



What we have, ideally: Random Functions

Fk:

k is our key!

Without knowing k, Eve learns nothing about m

Shared secret: index k chosen 
uniformly, at random

k k
Fk(m)



What we have, ideally: Random Functions

In essence, this protocol is saying “Let’s use the kth permutation function”
Infeasible to store all permutation functions – so instead cryptographers 
construct pseudorandom functions

Shared secret: index k chosen 
uniformly, at random

k k
Fk(m)

k is our key!

Without knowing k, Eve learns nothing about m



What we have, approximately: Pseudo-Random Functions

In essence, this protocol is saying “Let’s use the kth permutation function”
Infeasible to store all permutation functions – so instead cryptographers 
construct pseudorandom functions

Shared secret: index k chosen 
uniformly, at random

k k
Fk(m)

k is our key!

Without knowing k, Eve learns nothing about m


