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Cryptography
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• Cryptography: An ancient art
• 500BC – 20th century: Design -> break -> repair -> break -> repair ->…..

• Modern Cryptography: Cryptography as a science
• relies on rigorous threat models
• firm theoretical foundations and proofs!



Modern Cryptography
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Design, analysis and implementation of mathematical techniques for 
securing information, systems and computation against adversarial 

attacks.



Modern Cryptography: How many of the following 
actions involve cryptography ?
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1. Git cloning your lab repo
2. Connecting to Swarthmore’s WiFi
3. Updating software on your device
4. Making online purchases

A. 1 B. 2 C. 3 D. 4 E. 0
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Client Server

Browser: renders 
the webpage

Web Server
hosts the web page

Database
Private data

Where Does the Attacker Live?

Web server 
attacker

Network 
attacker

Malware 
attacker



Scenarios and Goals



Scenarios and Goals

Keep others from 
reading Alice’s messages/data

Keep others from undetectably 
tampering with Alice’s messages/data

Keep others from undetectably 
impersonating Alice (keep her to her word too!)

Confidentiality

Integrity

Authenticity



Recall the Bigger Picture

• Cryptography: small piece of a larger system
• Protect the entire system (recall: the weakest link)
• physical security
• OS security
• Network security
• Users
• Cryptography

• Cryptography is a crucial part of this toolbox



Cryptography: Terms

Encryption   (E): The process of transforming a message so that its meaning is not obvious
Decryption  (D): The process of transforming an encrypted message back into its original form. 
Plaintext      (P):  Original, unencrypted form of a message
Ciphertext   (C):  The encrypted form of a message

Formal Notation: We seek a cryptosystem for which P = D (E (P))



Historical Ciphers

• Substitution Cipher
• Monoalphabetic - Ceasar’s Cipher – fixed subst. over the entire message
• Polyalphabetic – a number of substitutions at different positions in the 

message

• Transposition Ciphers

• Codebooks

• Machines

Recommended Reading: The Codebreakers by David Kahn, The Code Book by Simon Singh



Ceasar Cipher: Substitution Cipher
Plaintext letters replaced with letters fixed shift way in the alphabet. 

Example:
• Plaintext: HEY BRUTUS BRING A KNIFE TO THE PARTY.
• Ciphertext: KHB EUXWXV EULQJ D NQLIH WR WKH SDUWB
• Key Shift 3:
• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• DEFGHIJKLMNOPQRSTUVWXYZABC



Ceasar Cipher: Substitution Cipher
Plaintext letters replaced with letters fixed shift way in the alphabet. 

Example:
• Plaintext: HEY BRUTUS BRING A KNIFE TO THE PARTY.
• Ciphertext: KHB EUXWXV EULQJ D NQLIH WR WKH SDUWB
• Key Shift 3:
• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• DEFGHIJKLMNOPQRSTUVWXYZABC

• Encryption and Decryption 
are symmetric. 

• Key space? 
• 26 

• Attack shift ciphers?
• brute force



Substitution Cipher

• Superset of shift ciphers: each letter is substituted for another one. 
• One implementation: Add a secret key
• Example
• Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
• Cipher:    ZEBRASCDFGHIJKLMNOPQTUVWXY

• “state-of-the-art” for thousands of years



Monoalphabetic Substitution Cipher
• What is the key space? 

• 26!  approx. = 2^88

• Launching an attack?
• frequency analysis: the study of frequency of letters or groups of letters (grams). 
• Common letters:  T, A, E, I, O
• Common 2-letter combinations (bi-grams): TH, HE, IN, ER
• Common 3-letter combinations (tri-grams): THE, AND, ING. 



Cryptanalysis of Monoalphabetic Substitution 

• Dominates cryptography through the first millennium

• Frequency analysis
• Remember Al-Kindi from 800 AD?

• Lessons?
• Use large blocks: instead of replacing ~6 bits at a time, replace 64 or 

128 bits
• Leads to block ciphers like DES and AES

• Use different substitutions to prevent frequency analysis
• Leads to polyalphabetic substitution ciphers and stream ciphers



Vigenère Cipher (1596)

• Main weakness of monoalphabetic substitution ciphers:
• Each letter in the ciphertext corresponds to only one letter in 

the plaintext

• Polyalphabetic substitution cipher
• Given a key K = (k1, k2, …, km)
• Shift each letter p in the plaintext by ki, where i is modulo m

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CRYPTOGRAPHY
LUCK
NLAZEIIBLJJI

Plaintext
Key

Ciphertext
(Shift 11 20 2 10 11 20 2 11 …)LUCKLUCK



Kasisky Test

• Repeating patterns (of length >2) in ciphertext are a tell
• Likely due to repeated plaintext encrypted under repeated key characters
• The distance is likely to be a multiple of the key length

T H E S U N A N D T H E M A N I N T H E M O O N

D P R Y E V N T N B U K W I A O X B U K W W B T

Plaintext
Key

Ciphertext
K I N G K I N G K I N G K I N G K I N G K I N G

Distance = 8



Cryptanalysis of Vigenère Cipher

• Cracking Vigenère (1854 or 1863)
1. Guess the key length x using Kasisky test of index 

of coincidence
2. Divide the ciphertext into x shift cipher 

encryptions
3. Use frequency analysis on each shift cipher

• Lessons?
• As key length increases, letter frequency becomes 

more random
• If key never repeated, Vigenère wouldn’t be 

breakable!



◦WW2 German Enigma machine
◦ Polyalphabetic substitution cipher 
◦ Substitution table changes from 

character to character
◦ Rotors control substitutions

◦ Allies broke Enigma (even 
before the war), significant 
intelligence impact

◦ Computers were built to break 
WW2 ciphers, by Alan Turing 
and others



Enigma Machine

• Use rotors that change position after 
each key
• Key: initial setting of the rotors
• Key space?
• 26^n for n rotors

● KeyGen:
○ Choose rotors, rotor orders, rotor positions, 

and plugboard settings
○ 158,962,555,217,826,360,000 possible keys!
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Cryptanalysis: Enigma

• Polish and British cryptographers built BOMBE, 
a machine to brute-force Enigma keys
• Why was Enigma breakable?

• Kerckhoff’s principle: The Allies stole Enigma 
machines, so they knew the algorithm

• Known plaintext attacks: the Germans often sent 
predictable messages (e.g. the weather report every 
morning)

• Chosen plaintext attacks: the Allies could trick the 
Germans into sending a message (e.g. “soldiers at 
Normandy”)

• Brute-force: BOMBE would try many keys until the 
correct one was found

BOMBE machine
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Legacy of Enigma

• Alan Turing, one of the cryptographers who broke 
Enigma, would go on to become one of the founding 
fathers of computer science

• Most experts agree that the Allies breaking Enigma 
shortened the war in Europe by about a year

Alan Turing
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Cryptography by Computers

• The modern era of cryptography started after WWII, with the work of Claude 
Shannon
• “New Directions in Cryptography” (1976) showed how number theory can be 

used in cryptography
• Its authors, Whitfield Diffie and Martin Hellman, won the Turing Award in 2015 for this 

paper
• This is the era of cryptography we’ll be focusing on.



How Cryptosystems work today
• Layered approach: 
• Cryptographic protocols (e.g., CBC mode encryption)
• Built on: Cryptographic primitives (block ciphers)

• Flavors of cryptography:
• Symmetric: private key
• Asymmetric: public key

• Public algorithms: Kerckhoff’s principle
• Security proofs based on assumptions (not this course)
• Warning!
• careful about inventing your own!
• Use vetted libraries to apply crypto algorithms!



Cryptosystem Stack

• Primitives:
• AES/DES
• ESA / ElGamal / Elliptic Curve

• Modes
• Block mode (CBC, ECV, CTR, GCM..)
• Padding structures

• Protocols:
• TLS, SSL, SSH

• Usage of protocols:
• Browser security
• Secure remote logins



Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key. 
• Asymmetric cryptography 
• Each party creates a public key pk and a secret key sk
• Inventors won Turing Award!



Kerckhoff’s Principle

• Security of a cryptographic object should depend only on the secrecy 
of the secret (private) key. 
• Security should not depend on the secrecy of the algorithm itself. 
• Foreshadow: Need for randomness – the key to keep private



Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key. 
• Challenge: How do you privately share a key?

• Asymmetric cryptography 
• Each party creates a public key pk and a secret key sk
• Challenge: How do you validate a public key?

• Key Insight: Randomness –
• something an adversary won’t know, can’t predict and can’t figure out. 



Randomness

Explicit Uses of Randomness:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Non-obvious Use cases
• Generate passwords for new users
• Shuffle the order of votes in an electronic voting machine
• Shuffle cards etc. (for online games)



Randomness



Randomness

• Ideally, to the attacker, it is indistinguishable from a string of bits chosen 
uniformly, at random.

• However, this is impossible with Alice and Bob having a shared secret. 



What we have, ideally: Random Functions



One Time Pad (1920s)

• Fix the vulnerability of the Vigenère cipher by using very long 
keys

• Key is a random string that is at least as long as the plaintext

• Similar encryption as with Vigenère (different shift per letter)

key

message

n bits

ciphertext

n bits

Å



Review: XOR
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0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

The XOR operator takes two bits 
and outputs one bit:

Useful properties of XOR:

x ⊕ 0 = x

x ⊕ x = 0

x ⊕ y = y ⊕ x

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

(x ⊕ y) ⊕ x = y



Review: XOR Algebra

Algebra works on XOR too
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y ⊕ 1 = 0 Goal: Solve for y

y ⊕ 1 ⊕ 1 = 0 ⊕ 1 XOR both sides by 1

y = 1 Simplify with identities



One-Time Pads: Key Generation
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

The key K is a randomly-chosen bitstring.

Recall: We are in the symmetric-key setting, so we’ll 
assume Alice and Bob both know this key.



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

The plaintext M is the bitstring 
that Alice wants to encrypt.

Idea: Use XOR to scramble up 
M with the bits of K.



One-Time Pads: Encryption
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Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

1 1 1 1 1 1 0 0 0 0 1 1C

Encryption algorithm: XOR each bit of K
with the matching bit in M.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The ciphertext C is the encrypted 
bitstring that Alice sends to Bob over 
the insecure channel.



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

Bob receives the ciphertext C. Bob knows the 
key K. How does Bob recover M?



One-Time Pads: Decryption
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Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

1 0 0 1 1 0 0 1 0 1 0 0M

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Decryption algorithm: XOR each bit of K
with the matching bit in C.



Cryptanalysis of OTP

• The key is random, so ciphertext is also random
• OTP achieves Perfect Secrecy
• Shannon or Information Theoretic Security
• Basic idea: ciphertext reveals no “information” about plaintext

• The adversary believes the probability that the plaintext is m is 
P(PT=m) before seeing the ciphertext
• Maybe they are very sure, or maybe they have no idea.

• The adversary believes the probability that the plaintext is m is 
P(PT=m | CT=c) after seeing that the ciphertext is c.
• P(PT=m | CT=c) = P(PT = m) means that after knowing that the 

ciphertext is c, the adversary’s belief does not change.
• Intuitively, the adversary learned nothing from the ciphertext



Put Another Way

• Imagine you have a ciphertext c where the length |c| = 1000
• I can give you a key ki with |ki| = 1000 such that:
• The decrypted message mi is the first 1000 characters of Hamlet

• Or, I can give you a key kj with |kj| = 1000 such that:
• The decrypted message mj is the first 1000 characters of the US Constitution

• If an algorithm offers perfect secrecy then:
• For a given ciphertext of length n
• All possible corresponding plaintexts of length n are possible decryptions



Cryptanalysis of OTP

• Intuitively, the key is random, so ciphertext is also random
• OTP achieves Perfect Secrecy
• Shannon or Information Theoretic Security
• Basic idea: ciphertext reveals no “information” about plaintext

• Caveats
• If the length of the OTP key is less than the length of the message…

• It’s not a OTP anymore, not perfectly secret!
• If you reuse the OTP key…

• It’s not a OTP anymore, not perfectly secret!

• Major issue with OTP in practice?
• How to securely distribute the key books to both parties



What we have, ideally: Random Functions

In essence, this protocol is saying “Let’s use the ith permutation function”
Infeasible to store all permutation functions – so instead cryptographers construct 
pseudorandom functions



What we have, ideally: Random Functions

• When describing algorithms, we assume access to uniformly 
distributed bits/bytes to use for key generation
• Where do these actually come from?
• Precise details depend on the system
• Linux or unix: /dev/random or /dev/urandom
• Do not use C’s rand() or java.util.Random
• Use crypto libraries instead



Random-number generation

• Two steps:
1. Continually collect a “pool” of high-entropy (i.e., “unpredictable”) 

data
2. When random bits are requested, process this data to generate a 

sequence of uniform, independent bits/bytes
• May “block” if insufficient entropy available



How Random is “Random”?



How might we get “good” random numbers?

• For security applications, want “cryptographically secure pseudorandom numbers” 
• Libraries include cryptographically secure pseudorandom number generators (CSPRNG)

• Linux:
• /dev/random: blocking: waits for enough entropy
• /dev/urandom: nonblocking, possibly less entropy
• getrandom() – syscall! – by default blocking

• Internally:
• Entropy pool: gathered from multiple sources
• e.g.: mouse/keyboard/network timings

• Better idea:
• AMD/Intel’s on-chip random number generator: RDRAND
• Hopefully no hardware bugs!


