
CS 88: Security and Privacy
11: Introduction to Cryptography

10-06-2022
slides adapted from Dave Levine, Vitaly Shmatikov, Christo Wilson, and

Franzi Roesner

XKCD: http://xkcd.com/538/

Cryptography

3

• Cryptography: An ancient art
• 500BC – 20th century: Design -> break -> repair -> break -> repair ->…..

• Modern Cryptography: Cryptography as a science
• relies on rigorous threat models
• firm theoretical foundations and proofs!

Modern Cryptography

4

Design, analysis and implementation of mathematical techniques for
securing information, systems and computation against adversarial

attacks.

Modern Cryptography: How many of the following
actions involve cryptography ?

5

1. Git cloning your lab repo
2. Connecting to Swarthmore’s WiFi
3. Updating software on your device
4. Making online purchases

A. 1 B. 2 C. 3 D. 4 E. 0

6

Client Server

Browser: renders
the webpage

Web Server
hosts the web page

Database
Private data

Where Does the Attacker Live?

Web server
attacker

Network
attacker

Malware
attacker

Scenarios and Goals

Scenarios and Goals

Keep others from
reading Alice’s messages/data

Keep others from undetectably
tampering with Alice’s messages/data

Keep others from undetectably
impersonating Alice (keep her to her word too!)

Confidentiality

Integrity

Authenticity

Recall the Bigger Picture

• Cryptography: small piece of a larger system
• Protect the entire system (recall: the weakest link)
• physical security
• OS security
• Network security
• Users
• Cryptography

• Cryptography is a crucial part of this toolbox

Cryptography: Terms

Encryption (E): The process of transforming a message so that its meaning is not obvious
Decryption (D): The process of transforming an encrypted message back into its original form.
Plaintext (P): Original, unencrypted form of a message
Ciphertext (C): The encrypted form of a message

Formal Notation: We seek a cryptosystem for which P = D (E (P))

Historical Ciphers

• Substitution Cipher
• Monoalphabetic - Ceasar’s Cipher – fixed subst. over the entire message
• Polyalphabetic – a number of substitutions at different positions in the

message

• Transposition Ciphers

• Codebooks

• Machines

Recommended Reading: The Codebreakers by David Kahn, The Code Book by Simon Singh

Ceasar Cipher: Substitution Cipher
Plaintext letters replaced with letters fixed shift way in the alphabet.

Example:
• Plaintext: HEY BRUTUS BRING A KNIFE TO THE PARTY.
• Ciphertext: KHB EUXWXV EULQJ D NQLIH WR WKH SDUWB
• Key Shift 3:
• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• DEFGHIJKLMNOPQRSTUVWXYZABC

Ceasar Cipher: Substitution Cipher
Plaintext letters replaced with letters fixed shift way in the alphabet.

Example:
• Plaintext: HEY BRUTUS BRING A KNIFE TO THE PARTY.
• Ciphertext: KHB EUXWXV EULQJ D NQLIH WR WKH SDUWB
• Key Shift 3:
• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• DEFGHIJKLMNOPQRSTUVWXYZABC

• Encryption and Decryption
are symmetric.

• Key space?
• 26

• Attack shift ciphers?
• brute force

Substitution Cipher

• Superset of shift ciphers: each letter is substituted for another one.
• One implementation: Add a secret key
• Example
• Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
• Cipher: ZEBRASCDFGHIJKLMNOPQTUVWXY

• “state-of-the-art” for thousands of years

Monoalphabetic Substitution Cipher
• What is the key space?

• 26! approx. = 2^88

• Launching an attack?
• frequency analysis: the study of frequency of letters or groups of letters (grams).
• Common letters: T, A, E, I, O
• Common 2-letter combinations (bi-grams): TH, HE, IN, ER
• Common 3-letter combinations (tri-grams): THE, AND, ING.

Cryptanalysis of Monoalphabetic Substitution

• Dominates cryptography through the first millennium

• Frequency analysis
• Remember Al-Kindi from 800 AD?

• Lessons?
• Use large blocks: instead of replacing ~6 bits at a time, replace 64 or

128 bits
• Leads to block ciphers like DES and AES

• Use different substitutions to prevent frequency analysis
• Leads to polyalphabetic substitution ciphers and stream ciphers

Vigenère Cipher (1596)

• Main weakness of monoalphabetic substitution ciphers:
• Each letter in the ciphertext corresponds to only one letter in

the plaintext

• Polyalphabetic substitution cipher
• Given a key K = (k1, k2, …, km)
• Shift each letter p in the plaintext by ki, where i is modulo m

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CRYPTOGRAPHY
LUCK
NLAZEIIBLJJI

Plaintext
Key

Ciphertext
(Shift 11 20 2 10 11 20 2 11 …)LUCKLUCK

Kasisky Test

• Repeating patterns (of length >2) in ciphertext are a tell
• Likely due to repeated plaintext encrypted under repeated key characters
• The distance is likely to be a multiple of the key length

T H E S U N A N D T H E M A N I N T H E M O O N

D P R Y E V N T N B U K W I A O X B U K W W B T

Plaintext
Key

Ciphertext
K I N G K I N G K I N G K I N G K I N G K I N G

Distance = 8

Cryptanalysis of Vigenère Cipher

• Cracking Vigenère (1854 or 1863)
1. Guess the key length x using Kasisky test of index

of coincidence
2. Divide the ciphertext into x shift cipher

encryptions
3. Use frequency analysis on each shift cipher

• Lessons?
• As key length increases, letter frequency becomes

more random
• If key never repeated, Vigenère wouldn’t be

breakable!

◦WW2 German Enigma machine
◦ Polyalphabetic substitution cipher
◦ Substitution table changes from

character to character
◦ Rotors control substitutions

◦ Allies broke Enigma (even
before the war), significant
intelligence impact

◦ Computers were built to break
WW2 ciphers, by Alan Turing
and others

Enigma Machine

• Use rotors that change position after
each key
• Key: initial setting of the rotors
• Key space?
• 26^n for n rotors

● KeyGen:
○ Choose rotors, rotor orders, rotor positions,

and plugboard settings
○ 158,962,555,217,826,360,000 possible keys!

22

Cryptanalysis: Enigma

• Polish and British cryptographers built BOMBE,
a machine to brute-force Enigma keys
• Why was Enigma breakable?

• Kerckhoff’s principle: The Allies stole Enigma
machines, so they knew the algorithm

• Known plaintext attacks: the Germans often sent
predictable messages (e.g. the weather report every
morning)

• Chosen plaintext attacks: the Allies could trick the
Germans into sending a message (e.g. “soldiers at
Normandy”)

• Brute-force: BOMBE would try many keys until the
correct one was found

BOMBE machine

23

Legacy of Enigma

• Alan Turing, one of the cryptographers who broke
Enigma, would go on to become one of the founding
fathers of computer science

• Most experts agree that the Allies breaking Enigma
shortened the war in Europe by about a year

Alan Turing

24

Cryptography by Computers

• The modern era of cryptography started after WWII, with the work of Claude
Shannon
• “New Directions in Cryptography” (1976) showed how number theory can be

used in cryptography
• Its authors, Whitfield Diffie and Martin Hellman, won the Turing Award in 2015 for this

paper
• This is the era of cryptography we’ll be focusing on.

How Cryptosystems work today
• Layered approach:
• Cryptographic protocols (e.g., CBC mode encryption)
• Built on: Cryptographic primitives (block ciphers)

• Flavors of cryptography:
• Symmetric: private key
• Asymmetric: public key

• Public algorithms: Kerckhoff’s principle
• Security proofs based on assumptions (not this course)
• Warning!
• careful about inventing your own!
• Use vetted libraries to apply crypto algorithms!

Cryptosystem Stack

• Primitives:
• AES/DES
• ESA / ElGamal / Elliptic Curve

• Modes
• Block mode (CBC, ECV, CTR, GCM..)
• Padding structures

• Protocols:
• TLS, SSL, SSH

• Usage of protocols:
• Browser security
• Secure remote logins

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.
• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk
• Inventors won Turing Award!

Kerckhoff’s Principle

• Security of a cryptographic object should depend only on the secrecy
of the secret (private) key.
• Security should not depend on the secrecy of the algorithm itself.
• Foreshadow: Need for randomness – the key to keep private

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.
• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk
• Challenge: How do you validate a public key?

• Key Insight: Randomness –
• something an adversary won’t know, can’t predict and can’t figure out.

Randomness

Explicit Uses of Randomness:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Non-obvious Use cases
• Generate passwords for new users
• Shuffle the order of votes in an electronic voting machine
• Shuffle cards etc. (for online games)

Randomness

Randomness

• Ideally, to the attacker, it is indistinguishable from a string of bits chosen
uniformly, at random.

• However, this is impossible with Alice and Bob having a shared secret.

What we have, ideally: Random Functions

One Time Pad (1920s)

• Fix the vulnerability of the Vigenère cipher by using very long
keys

• Key is a random string that is at least as long as the plaintext

• Similar encryption as with Vigenère (different shift per letter)

key

message

n bits

ciphertext

n bits

Å

Review: XOR

35

0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

The XOR operator takes two bits
and outputs one bit:

Useful properties of XOR:

x ⊕ 0 = x

x ⊕ x = 0

x ⊕ y = y ⊕ x

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

(x ⊕ y) ⊕ x = y

Review: XOR Algebra

Algebra works on XOR too

36

y ⊕ 1 = 0 Goal: Solve for y

y ⊕ 1 ⊕ 1 = 0 ⊕ 1 XOR both sides by 1

y = 1 Simplify with identities

One-Time Pads: Key Generation

37

Alice

0 1 1 0 0 1 0 1 0 1 1 1K

The key K is a randomly-chosen bitstring.

Recall: We are in the symmetric-key setting, so we’ll
assume Alice and Bob both know this key.

One-Time Pads: Encryption

38

Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

The plaintext M is the bitstring
that Alice wants to encrypt.

Idea: Use XOR to scramble up
M with the bits of K.

One-Time Pads: Encryption

39

Alice

0 1 1 0 0 1 0 1 0 1 1 1K

1 0 0 1 1 0 0 1 0 1 0 0M

1 1 1 1 1 1 0 0 0 0 1 1C

Encryption algorithm: XOR each bit of K
with the matching bit in M.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The ciphertext C is the encrypted
bitstring that Alice sends to Bob over
the insecure channel.

One-Time Pads: Decryption

40

Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

Bob receives the ciphertext C. Bob knows the
key K. How does Bob recover M?

One-Time Pads: Decryption

41

Bob

0 1 1 0 0 1 0 1 0 1 1 1K

1 1 1 1 1 1 0 0 0 0 1 1C

1 0 0 1 1 0 0 1 0 1 0 0M

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Decryption algorithm: XOR each bit of K
with the matching bit in C.

Cryptanalysis of OTP

• The key is random, so ciphertext is also random
• OTP achieves Perfect Secrecy
• Shannon or Information Theoretic Security
• Basic idea: ciphertext reveals no “information” about plaintext

• The adversary believes the probability that the plaintext is m is
P(PT=m) before seeing the ciphertext
• Maybe they are very sure, or maybe they have no idea.

• The adversary believes the probability that the plaintext is m is
P(PT=m | CT=c) after seeing that the ciphertext is c.
• P(PT=m | CT=c) = P(PT = m) means that after knowing that the

ciphertext is c, the adversary’s belief does not change.
• Intuitively, the adversary learned nothing from the ciphertext

Put Another Way

• Imagine you have a ciphertext c where the length |c| = 1000
• I can give you a key ki with |ki| = 1000 such that:
• The decrypted message mi is the first 1000 characters of Hamlet

• Or, I can give you a key kj with |kj| = 1000 such that:
• The decrypted message mj is the first 1000 characters of the US Constitution

• If an algorithm offers perfect secrecy then:
• For a given ciphertext of length n
• All possible corresponding plaintexts of length n are possible decryptions

Cryptanalysis of OTP

• Intuitively, the key is random, so ciphertext is also random
• OTP achieves Perfect Secrecy
• Shannon or Information Theoretic Security
• Basic idea: ciphertext reveals no “information” about plaintext

• Caveats
• If the length of the OTP key is less than the length of the message…

• It’s not a OTP anymore, not perfectly secret!
• If you reuse the OTP key…

• It’s not a OTP anymore, not perfectly secret!

• Major issue with OTP in practice?
• How to securely distribute the key books to both parties

What we have, ideally: Random Functions

In essence, this protocol is saying “Let’s use the ith permutation function”
Infeasible to store all permutation functions – so instead cryptographers construct
pseudorandom functions

What we have, ideally: Random Functions

• When describing algorithms, we assume access to uniformly
distributed bits/bytes to use for key generation
• Where do these actually come from?
• Precise details depend on the system
• Linux or unix: /dev/random or /dev/urandom
• Do not use C’s rand() or java.util.Random
• Use crypto libraries instead

Random-number generation

• Two steps:
1. Continually collect a “pool” of high-entropy (i.e., “unpredictable”)

data
2. When random bits are requested, process this data to generate a

sequence of uniform, independent bits/bytes
• May “block” if insufficient entropy available

How Random is “Random”?

How might we get “good” random numbers?

• For security applications, want “cryptographically secure pseudorandom numbers”
• Libraries include cryptographically secure pseudorandom number generators (CSPRNG)

• Linux:
• /dev/random: blocking: waits for enough entropy
• /dev/urandom: nonblocking, possibly less entropy
• getrandom() – syscall! – by default blocking

• Internally:
• Entropy pool: gathered from multiple sources
• e.g.: mouse/keyboard/network timings

• Better idea:
• AMD/Intel’s on-chip random number generator: RDRAND
• Hopefully no hardware bugs!

