
CS 88: Security and Privacy
09: Web Security: HTTP and Cookies

09-27-2022
slides adapted from Dave Levine, Vitaly Shmatikov, Christo Wilson

Reading Quiz

Announcements

• Midterm Exam on October 3rd

• 1-2.30pm and at 4 - 5.30pm @ SCI 199
• Review in Class on Thursday
• Dunkin Donuts + Coffee!
• Accommodations: not informed me? do so TODAY!!!

• Thanks for your feedback last week!
• 50%: Flipped classroom: Yay! 50%: Flipped classroom: No!
• First upper-level G2 for majority of the class
• Flipped on Tuesday
• Content on Thursday + 10 minutes of ask anything!

• Everything will be recorded

• Solutions to worksheets: up today on Edstem
• Feedback is important!

SQL Injection

spongebob’ or 1=1); DROP TABLE Users; #

spongebob’ or 1=1);#

Can chain together statements, and can modify existing statements

The underlying issue

Prepare is only applied to the
leaves, so the structure of the
tree is fixed.

Parametrized SQL statement.
- compile the query first
- plug inputs later

The underlying issue

spongebob’
OR 1=1);#

Prepare is only applied to the
leaves, so the structure of the
tree is fixed.

Not Just SQL!

Front end Back endUser

Forms a string
containing user
input

Executes this string
as a command or
query

Database
NoSQL storage
Javascript
eval(…)

01001 000101

Injection vulnerabilities are a generic issue!

PREVENTING
INJECTION ATTACKS Val

ida
te

all
 th

e i
npu

ts!

Mak
e s

ure
 un

saf
e i

npu
ts

can
not

cha
nge

 th
e m

ean
ing

 of
 qu

ery

Most injection attacks trick
application into interpreting data
as code

This changes the semantics of a
query or command generated by
the application

A basic web architecture

13

Client Server

Browser Web Server

DatabasePrivate data

DB is a separate entity,
logically (and often physically)

Much of the user data is part
of the browser

14

Client Server

Browser: renders
the webpage

Web Server
hosts the web page

DatabasePrivate data

DB is a separate entity,
logically (and often physically)

Where Does the Attacker Live?

Web server
attacker

Network
attacker

Malware
attacker

Much of the user data is part
of the browser

Web Architecture: Simplified View

Client Side Server SideProtocols

Gopher
FTP

HTTP

Document
Renderer

HTML Parser

N
etw

ork Protocols

N
etw

ork Protocols

HTML

Web Browser
Responsible for securely confining Web
content presented by visited websites

Web servers: Responsible for
securely parsing input data
PHP, Ruby, ASP, JSP

Overview

• The Web Model
• What components make up today’s browsers and web servers?
• How has this functionality evolved over time?
• What security model governs the browser?

• Attacks Against Clients
• Cross Site Scripting (XSS) and Response Splitting
• Cross Site Request Forgery (CSRF)
• Clickjacking

• Attacks Against Servers
• SQL Injection
• Unrestricted Uploads
• CGI shell injection

What is the web?

•Web (World Wide Web): A collection of data and services
• Data and services are provided by web servers
• Data and services are accessed using web browsers (e.g. Chrome, Firefox)

•The web is not the Internet
• The Internet describes how data is transported between servers and

browsers

Elements of the Web

• URLs: How do we uniquely identify a piece of data on the web?
• HTTP: How do web browsers communicate with web servers?
• Data on the webpage can contain:

• HTML: A markup language for static webpages
• CSS: A style sheet language for defining the appearance of webpages
• Javascript: a programming language for running code in the web

browser

Interacting with web servers

http://www.cs.swarthmore.edu/~chaganti/index.html

Protocol:
ftp

https
tor

Hostname/server
• translated to an IP address

by DNS

Path to the resource

index.html is static content
i.e., a fixed file returned by the

server

Interacting with web servers: dynamic content

http://facebook.com/delete.php Path to the resource

http://facebook.com/delete.php?f=eva264&w=16

arguments

server generates the content on the fly

http://facebook.com/delete.php?f

HTTP: Hypertext transfer protocol

§ client/server model

• client: browser that

requests, receives, (using

HTTP protocol) and

“displays”Web objects

• server: Web server sends

(using HTTP protocol)

objects in response to

requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

Slide 21

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

host name path name

Slide 22

HTTP Overview

2. Browser establishes connection with server.
Looks up “some.host.name.tld”
connects //more on this later

Slide 23

HTTP Overview

3. Browser requests the corresponding data.
GET /directory/name/file.ext HTTP/1.0
Host: some.host.name.tld
[other optional fields, for example:]
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
Accept-language: en

Slide 24

HTTP Overview

4. Server responds with the requested data.
HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

Slide 25

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

Slide 26

HTTP Methods

GET: Get the resource at the specified URL (does not accept message body)

POST: Create new resource at URL with payload

PUT: Replace target resource with request payload

PATCH: Update part of the resource

DELETE: Delete the specified URL

HTTP Methods

HTTP Request Header

HTTP Response Header

Example
GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: text/html
Accept-Ranges: bytes
ETag: "316912886"
Last-Modified: Wed, 04 Jan 2017 17:47:31 GMT
Content-Length: 1062
Date: Wed, 05 Sep 2018 17:27:34 GMT
Server: lighttpd/1.4.35

Response
headers

Slide 30Response Body

Example

GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

<html><head><title>Demo Server</title></head>
<body>
.....
</body>
</html>

Slide 31

Response Headers

Response
Body

The Swarthmore IT department decides to come up with a new header field
Trusted_Source in HTTP response fields. This field is used to tag all
websites that have swarthmore as the origin, as trusted. How can
swarthmore ensure deployability? Can this scheme be subverted by a
malicious user?

Discussion Question: HTTP Extensible Headers

GET /directory/name/file.ext HTTP/1.0
Host: some.host.name.tld
[other optional fields, for example:]
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
Accept-language: en
Referer: http://google.com?q=swarthmore.edu

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
Trusted_Source = Yes
[Blank line]
(Data data data data…)

A. Cannot be deployed, hence cannot be subverted.
B. Can be deployed, cannot be subverted

C. Can be deployed, can be subverted
D. Hard to deploy, can be subverted.

http://google.com/

State(less)

(XKCD #869, “Server Attention Span”)

Slide 33

slide 34

What Are Cookies Used For?

• Authentication
• The cookie proves to the website that the client previously

authenticated correctly

• Personalization
• Helps the website recognize the user from a previous visit

• Tracking
• Follow the user from site to site;
• Read about iPads on CNN and see ads on Amazon 😱
• How can an advertiser (A) know what you did on another site (S)?

Discussion Question: Let’s say the web-page at http://cute-
puppies.com looks like the following:

<html>
<body>

<p>Here is a GIF of puppies</p>

<script type="text/javascript"

src="http://yahoo.com/analytics.js"></script>
</body>

</html>

Alice uses Mozilla Firefox. In her first browser tab, she has https://swarthmore.edu open. In a
second tab, she opens http://cute-puppies.com. In a third tab, she opens http://cute-
puppies.com once again. Which entities know that the same person visited cute-puppies.com
twice?

A. cute-puppies.com operators B. yahoo.com operators C. Mozilla D. Swarthmore

Browser:
Basic Execution

Model

Each browser window or frame:
◦ Loads content

◦ Renders
◦ Processes HTML and executes scripts to display the page

◦ May involve images, subframes, etc.

◦ Responds to events

Events
◦ User actions: OnClick, OnMouseover

◦ Rendering: OnLoad, OnUnload
◦ Timing: setTimeout(), clearTimeout()

HTML and Scripts

<html>
…

<p> The script on this page adds two numbers
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
…

</html>

Browser receives content,
displays HTML and executes
scripts

(i)Frames

Beyond loading individual resources,
websites can also load other websites
within their window

• Frame: rigid visible division

• iFrame: floating inline frame
Allows delegating screen area to
content from another source (e.g., ad)

https://a.com

b.com

c.com
a.com

d.com

Event-Driven Script Execution

<script type="text/javascript">
function whichButton(event) {
if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!")
}}

</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Function gets executed
when some event happens

Script defines a
page-specific function

Document Object Model (DOM)
Javascript can read and modify page by interacting with DOM

• Object Oriented interface for reading/writing page content

• Browser takes HTML -> structured data (DOM)

<p id=“demo"></p>

<script>
 document.getElementById(‘demo').innerHTML = Date()
</script>

Modern Website

Which sections of this page generate cookies? How many third-party cookies?

Modern Website
Google analytics

Third-party ad Framed ad
Local scripts

jQuery library

Modern Website

The LA Times homepage includes 540 resources from
nearly 270 IP addresses, 58 networks, and 8 countries

CNN—the most popular mainstream news site—loads
361 resources

Many of these aren’t controlled by the main sites

Cookies and web authentication

• An extremely common use of cookies is to track users who have already
authenticated

• If the user already visited http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session cookie” with the
logged-in user’s info

• Subsequent requests (GET and POST) include the cookie in the request headers
and/or as one of the fields: http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to the same browser that
authenticated Alice earlier.”

Web Isolation

Safely browse the web

Visit a web sites (including malicious ones!) without incurring harm

Site A cannot steal data from your device, install malware, access camera, etc.

Site A cannot affect session on Site B or eavesdrop on Site B

Support secure high-performance web apps

Web-based applications (e.g., Google Meet) should have the same or better
security properties as native desktop applications

Web Security Model

Subjects
“Origins” — a unique scheme://domain:port

Objects
DOM tree, DOM storage, cookies, javascript namespace, HW permission

Same Origin Policy (SOP)
Goal: Isolate content of different origins

 - Confidentiality: script on evil.com should not be able to read bank.ch

 - Integrity: evil.com should not be able to modify the content of bank.ch

Origins Examples
Origin defined as scheme://domain:port
All of these are different origins — cannot access one another
• http://swarthmore.edu

• http://www.swarthmore.edu

• http://swarthmore.edu:8080

• https://swarthmore.edu

These origins are the same — can access one another
• http://swarthmore.edu

• http://swarthmore.edu:80

• http://swarthmore.edu.cs

Bounding Origins — Windows
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…

 - read or write content from bank.com tab

 - read or write bank.com's cookies
 - detect that the other tab has bank.com loaded

Bounding Origins — Frames
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

attacker.com cannot…

 - read content from bank.com frame

 - access bank.com's cookies
 - detect that has bank.com loaded

http://example.comattacker.com

bank.com bank.com

HTTP Cookies

Set-Cookie: <cookie-name>=<cookie-value>

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com/ GET /img/user.jpg

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com
<img src=“/img/user.jpg”

bank.com/

attacker.com

GET /img/user.jpg

GET /img/user.jpg

Cookie Same Origin Policy
Cookies use a different definition of origin than the DOM:

 (domain, path): (cs88.swarthmore.edu, /foo/bar)

A page can set a cookie for its domain or any parent domain  
(as long as the parent domain is not a public suffix).  
 

Can set a cookie for its path or any parent path.

Browser sends cookies that are in a URL’s scope. Cookies
that…

belong to domain or parent domain

 AND

are located at the same path or parent path

DOM definition of an origin:  
(scheme, domain, port)

Setting Cookie Scope

Websites can set a scope to be any parent of domain and URL path

✔ cs88.swarthmore.edu can set cookie for cs88.swarthmore.edu

✔ cs88.swarthmore.edu can set cookie for swarthmore.edu

❌ swarthmore.edu cannot set cookie for cs88.swarthmore.edu

✔ website.com/ can set cookie for website.com/

✔ website.com/login can set cookie for website.com/

❌ website.com cannot set cookie for website.com/login

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com

login.site.com

login.site.com/my/home

site.com/account

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL path

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL path

