
CS 88: Security and Privacy
07: Software Security: Attacks and Defenses

09-20-2022

Format String Vulnerabilities

Variable arguments in C

In C, we can define a func.on with a variable number of arguments

void printf(const char* format,….)

Usage:
printf(“hello world”);
printf(“length of %s = %d \n”, str, str.length());

format specifica.on encoded by special % characters

fun with format strings

printf(“you scored %d\n”, score);

stack base pointer
return address
arg1: 0x08048464
arg2: score = 10

\0 \n d

% d e

r o c s

u o y

printf() function

fun with format strings

printf(“a %s costs $%d\n”, item, price);

stack base pointer
return address
arg1: 0x08048464
arg2: item: 0xdacc
arg3: price: 0.5

\0 \n d %

$ s t

s o c

s % a

printf() function

\n a e p

Implementation of printf

Closer look at the stack

Sloppy use of printf

stack base pointer
return address
arg1: 0x08048464
arg2: 0x08048468
arg3: 0x0804847f
…..
….

.. .. s %

s %

s % s

% s %

Format specification encoded by special % characters

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

A. Store the value 14 in buf
B. Store the value 14 on the stack

(specify where)
C. Replace the string Overflow with 14
D. Something else

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

• Stack location pointed to by
printf’s internal stack pointer will
be interpreted as an address

• Write # characters at this
address

Closer look at the stack

printf(“overflow this!%n”);

Write 14 into the caller’s frame!

fun with printf: what’s the output of the following
statements?

printf(“100% dive into C!”)

printf(“100% samy worm”);

printf(“%d %d %d %d”);

printf(“%d %s);

printf(“100% not another segfault!”);

fun with printf: what’s the output of the following
statements?

printf(“100%dive into C!”)
100 + value 4 bytes below retaddress as an integer + “ive”

printf(“100%samy worm”);
prints bytes pointed to by the stack entry up through the first NULL

printf(“%d %d %d %d”);
print series of stack entries as integers

printf(“%d %s);
print value 4 bytes below return address plus bytes pointed to by the preceding stack entry

printf(“100% not another segfault!”);
prints 100 not another segfault! and stores the number 3 on the stack

Viewing the stack

instruct printf:
• retrieve 5 parameters
• display them as 8-digit padded hexademical numbers

Output

C code

slide 17

Using %n to Mung Return Address

saved
ebp

Local variables

…
ret

address &str

args

printf’s stack frame caller function

Caller’s frame

saved
ebp

Local variables

…
ret

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Buffer with attacker-supplied
input string

slide 18

Using %n to Mung Return Address

saved
ebp

Local variables

…
ret

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of
characters in attackString into RET

&RET

slide 19

Using %n to Mung Return Address

C has a concise way of printing multiple symbols:
• %Mx will print exactly 4M bytes (taking them from the stack).
• Attack string should contain enough “%Mx” so that the number of characters printed is equal to the

most significant byte of the address of the attack code.
• Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus replacing RET

with the address of attack code byte by byte.

slide 19

saved
ebp

Local variables

…
ret

address
“… attackString%n”, Caller’s frame

See “Exploiting Format String Vulnerabilities” for details

If your program has a format string bug, assume that the attacker
can learn all secrets stored in memory, and assume that the
attacker can take control of your program.

Validating input

• Determine acceptable input, check for match --- don’t just check against list of
“non-matches”
• Limit maximum length
• Watch out for special characters, escape chars.
• Check bounds on integer values
• Check for negative inputs
• Check for large inputs that might cause overflow!

Validating input

• Filenames
• Command-line arguments
• Even argv[0]…
• Commands
• E.g., URLs, http variables., SQL
• E.g., cross site scripting, (next lecture)

Memory attacks

The problem: mixing data with control flow in memory

local
variables

saved
ebp

ret
addr arguments

stack frame
data overwrites
return address

Memory Attacks:
Causes

“Classic” memory exploit involves code
injection

• malicious code @ predictable location in
memory -> masquerading as data

• trick vulnerable program into passing control

Memory Attacks:
Causes and Cures

“Classic” memory exploit involves code injection

Idea: prevent execution of untrusted code

Developer approaches:
• Use of safer functions like strlcpy(), strlcat() etc.
• safer dynamic link libraries that check the length of the data

before copying.

Hardware approaches: Non-Executable Stack

OS approaches: ASLR (Address Space Layout Randomization)

Compiler approaches: Stack-Guard Pro-Police

Data Execution Prevention: a.k.a Mark memory as non-
executable

Each page of memory has separate access permissions:
• R -> Can Read, W -> Can Write, X -> Can Execute

Mark all writeable memory locations as non-executable

NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM

• Now you can’t write code to the stack or heap
• No noticeable performance impact

Address Space Layout Randomization
Onload: Randomly relocate the base address of everything

in memory

• libraries (DLLs, shared libs), application code, stack heap

⇒ attacker does not no location

Example: PAX implementation

Address Space Layout Randomization

Difficult to guess %ebp address and address of the malicious code

Launch buffer overflow? Difficult to guess the stack address!

randomize the start location of stack, code data.

Compiler Defenses:
Stack Canary

Method 1: StackGuard
• Embed “canaries” (stack cookies) in stack frames and verify

their integrity prior to function return.

saved
ebp

Local variables

local
ret

address
func.
arg

callee’s frame caller frame

local
saved
ebp

ret
address

func.
arg

previous frame

saved
ebplocal

ret
address

func.
arg

callee’s frame caller frame

local saved
ebp

ret
address

func.
arg

previous frame

canarycanary

🐤🐤🐤🐤 🐤🐤🐤🐤

StackGuard
Overflow canary? Segfault!

saved
ebplocal

ret
address

func.
arg

callee’s frame caller frame

local saved
ebp

ret
address

func.
arg

previous frame

canarycanary

🐤🐤🐤🐤 🐤🐤🐤🐤

⚠

Random canary:
• Random string chosen at program startup
• To corrupt, attacker must learn/guess current

random string

Terminator canary:
• {0, newline, linefeed, EOF}
• String functions will not copy beyond

terminator
• Attacker cannot use string functions to

corrupt the stack

Minimal performance effects: 8% for Apache
Program must be recompiled

Canary check in gcc:

• Rearrange stack layout to prevent ptr overflow.

args
ret addr

SFP
CANARY

local string buffers

local non-buffer variables

Stack
Growth

pointers, but no arrays

String
Growth

copy of pointer args
Protects pointer args and local
pointers from a buffer overflow

StackGuard Variations

PointGaurd

• Insight:
• pointers in memory corrupted via overflow
• pointers in registers are not overflowable

• Solution:
• Store pointers encrypted in memory
• To dereference a pointer: decrypt it as you load it unto a register

Normal Pointer Dereference

Normal Pointer Dereference under attack

PointerGuard Pointer Dereference

PointerGuard Pointer Dereference Under Attack

