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Format String Vulnerabilities



Variable arguments in C

In C, we can define a func.on with a variable number of arguments

void printf(const char* format,….)

Usage:
printf(“hello world”);
printf(“length of %s = %d \n”, str, str.length());

format specifica.on encoded by special % characters



fun with format strings

printf(“you scored %d\n”, score);

stack base pointer
return address
arg1: 0x08048464
arg2: score = 10
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fun with format strings

printf(“a %s costs $%d\n”, item, price);

stack base pointer
return address
arg1: 0x08048464
arg2: item: 0xdacc
arg3: price: 0.5
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Implementation of printf



Closer look at the stack



Sloppy use of printf

stack base pointer
return address
arg1: 0x08048464
arg2: 0x08048468
arg3: 0x0804847f
…..
….
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Format specification encoded by special % characters



The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar. 



The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar. 

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

A. Store the value 14 in buf
B. Store the value 14 on the stack 

(specify where)
C. Replace the string Overflow with 14
D. Something else



The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar. 

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

• Stack location pointed to by 
printf’s internal stack pointer will 
be interpreted as an address

• Write # characters at this 
address



Closer look at the stack

printf(“overflow this!%n”);

Write 14 into the caller’s frame!



fun with printf: what’s the output of the following 
statements?

printf(“100% dive into C!”)

printf(“100% samy worm”);

printf(“%d %d %d %d”);

printf(“%d %s);

printf(“100% not another segfault!”);



fun with printf: what’s the output of the following 
statements?

printf(“100%dive into C!”)
100 + value 4 bytes below retaddress as an integer + “ive”

printf(“100%samy worm”);
prints bytes pointed to by the stack entry up through the first NULL

printf(“%d %d %d %d”);
print series of stack entries as integers

printf(“%d %s);
print value 4 bytes below return address plus bytes pointed to by the preceding stack entry

printf(“100% not another segfault!”);
prints 100 not another segfault! and stores the number 3 on the stack



Viewing the stack

instruct printf:
• retrieve 5 parameters
• display them as 8-digit padded hexademical numbers

Output

C code



slide 17

Using %n to Mung Return Address

saved 
ebp

Local variables

…
ret 

address &str

args

printf’s stack frame caller function

Caller’s frame

saved 
ebp

Local variables

…
ret 

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Buffer with attacker-supplied 
input string
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Using %n to Mung Return Address

saved 
ebp

Local variables

…
ret 

address

printf’s stack frame caller function

“… attackString%n”, Caller’s frame

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of 
characters in attackString into RET

&RET
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Using %n to Mung Return Address

C has a concise way of printing multiple symbols:
• %Mx will print exactly 4M bytes (taking them from the stack).  
• Attack string should contain enough “%Mx” so that the number of characters printed is equal to the 

most significant byte of the address of the attack code.
• Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus replacing RET 

with the address of attack code byte by byte.

slide 19

saved 
ebp

Local variables

…
ret 

address
“… attackString%n”, Caller’s frame

See “Exploiting Format String Vulnerabilities” for details



If your program has a format string bug, assume that the attacker 
can learn all secrets stored in memory, and assume that the 
attacker can take control of your program.



Validating input

• Determine acceptable input, check for match --- don’t just check against list of 
“non-matches”
• Limit maximum length
• Watch out for special characters, escape chars.
• Check bounds on integer values
• Check for negative inputs
• Check for large inputs that might cause overflow!



Validating input

• Filenames
• Command-line arguments
• Even argv[0]…
• Commands
• E.g., URLs, http variables., SQL
• E.g., cross site scripting, (next lecture)



Memory attacks

The problem:  mixing data with control flow in memory

local 
variables

saved 
ebp

ret
addr arguments

stack frame
data overwrites
return address



Memory Attacks: 
Causes

“Classic” memory exploit involves code 
injection

• malicious code @ predictable location in 
memory -> masquerading as data

• trick vulnerable program into passing control 



Memory Attacks: 
Causes and Cures

“Classic” memory exploit involves code injection

Idea: prevent execution of untrusted code

Developer approaches:
• Use of safer functions like strlcpy(), strlcat() etc.
• safer dynamic link libraries that check the length of the data 

before copying.

Hardware approaches: Non-Executable Stack 

OS approaches: ASLR (Address Space Layout Randomization)

Compiler approaches: Stack-Guard Pro-Police



Data Execution Prevention: a.k.a Mark memory as non-
executable 

Each page of memory has separate access permissions:
• R -> Can Read, W -> Can Write, X -> Can Execute

Mark all writeable memory locations as non-executable

NX-bit on AMD64,     XD-bit on Intel x86  (2005),    XN-bit on ARM

• Now you can’t write code to the stack or heap 
• No noticeable performance impact



Address Space Layout Randomization
Onload: Randomly relocate the base address of everything 

in memory

• libraries (DLLs, shared libs), application code, stack heap

⇒ attacker does not no location

Example: PAX implementation



Address Space Layout Randomization



Difficult to guess %ebp address and address of the malicious code 

Launch buffer overflow? Difficult to guess the stack address!

randomize the start location of stack, code data.



Compiler Defenses: 
Stack Canary



Method 1: StackGuard
• Embed “canaries” (stack cookies) in stack frames and verify 

their integrity prior to function return.
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StackGuard
Overflow canary? Segfault!
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⚠

Random canary:
• Random string chosen at program startup
• To corrupt, attacker must learn/guess current 

random string

Terminator canary:
• {0, newline, linefeed, EOF}
• String functions will not copy beyond 

terminator
• Attacker cannot use string functions to 

corrupt the stack

Minimal performance effects:   8% for Apache
Program must be recompiled



Canary check in gcc:



• Rearrange stack layout to prevent ptr overflow.

args
ret addr

SFP
CANARY

local string buffers

local non-buffer variables

Stack
Growth

pointers, but no arrays

String
Growth

copy of pointer args
Protects pointer args and local 
pointers from a buffer overflow

StackGuard Variations



PointGaurd

• Insight:
• pointers in memory corrupted via overflow
• pointers in registers are not overflowable

• Solution:
• Store pointers encrypted in memory
• To dereference a pointer: decrypt it as you load it unto a register



Normal Pointer Dereference



Normal Pointer Dereference under attack



PointerGuard Pointer Dereference



PointerGuard Pointer Dereference Under Attack


