CS 88: Security and Privacy

06: Software Security: Attacks and Defenses
09-15-2022

Announcements

Reading Quiz

Draw out a stack diagram and build your very own
shellcode attack

Information you are given:

char buffer []

° buffer to OverﬂOW: 0x90 0x90 local variables
0x90 0x90
* char buffer[50] el saved ebp
e &buffer[0] = Oxffffd88c

hijacked ret

0x90 0x90
0x90 0x90

* Seip = Oxffffd8cc shellcode previous frame
e shellcode = 20 bytes

saved ret: eip

Draw out a stack diagram and build your very own
shellcode attack

Information you are given:

* Dbuffer to overflow:
e char buffer[100]
e &buffer[0] = Oxffffd88c

* Seip = Oxffffd8bc
e shellcode = 20 bytes

0x90 0x90
0x90 0x90

hijacked ret

0x90 0x90
0x90 0x90

shellcode

hijacked
return address

l

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

NOP

Shellcode

Start of Find the offset to the start
char buffer of the return address

\
\ 1
\ ’
~ I 4

Starting address of the
attack + padding

Buffer Overflow: Causes

* Typical memory exploit involves code injection

* Put malicious code at a predictable location in memory, usually
masquerading as data

* Trick vulnerable program into passing control to it

e Overwrite saved EIP, function callback pointer, etc.

Buffer Overflows: can exploit...

. pointer assignment & memory allocation, de-allocation

. function pointers

. general purpose registers

A
B
C. calls to library routines
D
E.

format strings

Other Control Hijacking Opportunities: return-to-libc

attack

Attack code

(1) Change the return address to point to the
attack code. After the function returns,
control is transferred to the attack code.

(2) ... or return-to-libc: use existing
instructions in the code segment such as
system(), exec(), etc. as the attack code.

pointer var (ptr)

buffer (buf)

stack base pointer

return address

args (funcp)

«— system()

@ set stack pointers to
return to a dangerous
library function

“/bin/sh”

Other Control Hijacking Opportunities: Function Pointers

Global Offset Table

Attack code 3 ;)
yscall pointer |

@ pointer var (ptr)

buffer (buf)

(1) Change a function pointer to point to the stack base pointer
attack code return address
@ args (funcp)

(2) Any memory, on or off the stack, can be
modified by a statement that stores a
compromised value into the compromised
pointer. strcpy(buf, str); *ptr = buf[0];

Other Control Hijacking Opportunities: Frame Pointer

Fake return
address

Fake SFP

Attack code

Arranged like a
real frame

Change the caller’s saved frame pointer to point to
attacker-controlled memory.
Caller’s return address will be read from this memory.

pointer var (ptr)

buffer (buf)

stack base pointer

return address

args (funcp)

Some Unsafe C lib Functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)

scanf (const char *format, ...)

printf (conts char *format, ...)

15

Avoid strcpy, ...

 We have seen that is unsafe

simply copies memory contents into starting from until is
encountered, ignoring the size of

* Avoid etc.

e Use instead

Even these are not perfect... (e.g., no null termination)

* Always a good idea to do your own validation when obtaining input from
untrusted source

Still need to be careful when copying multiple inputs into a buffer

Cause of vulnerability: No Range Checking

- strcpy does not check input size

- strepy(buf, str) simply copies memory contents into buf starting from
*strountil “\0” is encountered, ignoring the size of area allocated to buf

Does Range Checking Help?

strncpy(char *dest, const char *src, size_t n)
e copy no more than n characters from source to destination
e contingent on? the right value of n!

e Potential overflow in htpasswd.c (Apache 1.3):

strcat(record,”:”);
strcat(record,cpw); ..

- strcpy(record,user); ﬁ Copies username (“user”) into buffer (“record”),

then appends “:” and hashed password (“cpw”)

. The fix ensures that there are no
Published fix: vulnerabilities

strncpy(record,user ,MAX_STRING_LEN-1); . The vulnerabilities are still
strcat(record,”:”); present.

strncat(record, cpw,MAX_STRING_LEN-1); ..

Integer overflows

#include <stdio.h>
#include <string.h> i = atoi(argv[1]);
s=i;
int main(int argc, char *argv[]){
unsigned short s; if(s >= 80) { /* [wl] */
inti; printf("Oh no you don't!\n");
char buf[80]; return -1; A) This code is free
} from integer
if(argc < 3){ overflow
return -1; printf("s = %d\n", s); vulnerabilities.
} Integer
bUf[l] - |\0|; still exist.
printf("%s\n", buf);

return O;

Width Overtlows

uint32_t x = 0x10000;
uintle_t y = 1;
uintle_t z = x + vy;

 Width overflows occur when assignments are made to variables that can't store the
result

* |nteger promotion
e Computation involving two variables x, y where width(x) > width(y)

* yis promoted such that width(x) = width(y)

Sign Overflows

int f(char* buf, int len) {
char dst_buf[64];
if (len > 64)
return 1;
memcpy(dst_buf, buf, len);
return 0;

memcpy(void *, void *, unsigned 1int)

}

 Sign overflows occur when an unsigned variable is treated as signed, or vice-versa
e Can occur when mixing signed and unsigned variables in an expression
* Or, wraparound when performing arithmetic

Broward Vote-Counting Blunder Changes Amendment Result
POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

AT Soltware is not geared to count more than 32,000 votes in a
precinct. So what happens when it gets to 32,000 is the software starts
quunti&backward," said Broward County Mayor llene Lieberman

! d / Y
Broward County Mayor
Ilene Lieberman says
voting counting error is an

"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, it’s clear amendment 4 passed.

Heartbleed vulnerability

struct {
HeartbeatMessageType type;
uchar payload [HeartbeatMessage.payload length];
uchar padding[padding_length];
} HeartbeatMessage;

Heartbleed vulnerability

Heartbleed attack activity for IBM Managed Security Services customers

April 2014
400,000
Aitacks peaked with
300,000 more than 300,000
attacks in one day
200,000
100,000 | I I
2 2 2 % & 2 & 3 8 3 2 8 3 % %2 3 %3 2 &8 2% %8
S - 8§ ®» ¥ ® e~ ®» 2 g x § % S 2 £ % 8 R 8

. Event count

Figure 1. Attack activity related to the Hearthleed vulnerability, as noted for IBM Managed Security Services customers, in April 2014

Oft-By-One Overtlow

Home-brewed range-checking string copy
void notSoSafeCopy(char *input) {
char buffer[512]; int 1;

. . . This will copy 513
for (1=0; 1<=512; 1++) gh?_fractgrs ﬁm?éo_
. i uffer. Oops!
buffer[i] = 1nput@;

h
void main(Cint argc, char *argv[]) {
1f (argc==2) What damage can an off by 1 error really do?

notSoSafeCopy(argv[1]); A) no damage

B) change the value of ebp
C) execute shellcode
D) something else (be prepared to discuss)

If your program has a buffer overflow bug, you should assume
that the bug is exploitable and an attacker can take control of
your program.

What's wrong with this code?

#define BUF SIZE 16 A.Nothing
char buf[BUF_SIZE]; B. Buffer overflow

void vulnerable()

(C. Integer overflow
int len = read int from network(); D.Race Condition

char *p read string from network();
if(len > BUF SIZE) {

printf(“Too large\n”);

return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dest, const void *src, size t n);

typedef unsigned int size t;

Other overflow targets

* Format strings in C
* Heap management structures used by malloc

Format String Vulnerabilities

Variable arguments in C

In C, we can define a function with a variable number of arguments
void printf(const char* format,...)

Usage:

printf(“hello world”);
printf(“length of %s = %d \n”, str, str.length());

format specification encoded by special % characters

fun with format strings

printf(“you scored %d\n”,

),

stack base pointer

printf() function

return address

~|arg1: 0x08048464

arg2: score

\O [\n]|d

% d |e

Implementation of printf

* Special functions va_start, va_arg, va end

compute arguments at run-time

void printf (const char* format, ...)

{

int i; char c¢; char* s; double d;

va_list ap;

o a variable arg list */

* declare an “argument pointer” t
va_start (ap, format); injitialize arg pointer using last known arg */

printf has an internal
stack pointer

for (char* p = format; *p l= *\0’; p++) {
if (*p == '%’) {
switch (*++p)
case ‘4d’:
i = va _arg(ap, int); break;
case gt
s = va_arg(ap, char*); break;
case e’
c¢ = va_arg(ap, char); break;
}
. /* etc. for each % specification */

va_end(ap) ;

/* restore any special stack manipulations */

fun with format strings

printf(“a %s costs $%d\n”,

),

stack base pointer

printf() function

return address

~|arg1: 0x08048464

arg2: item

arg3: price

\O

\n

%

S

S

S

%

Closer look at the stack

printf (“Numbers: 3%d,%d”,

5, 6);

Internal stack
pointer starts here

d

Saved FP|ret/IP| &str

[+ < [mam

7

\
hd

Local variables

printf (“Numbers: %d,%d”);

i Addr OxFF...F

S,

Internal stack
pointer starts here

\
Y

Saved FP|rev/IP| &str [Callers frame|

7

Local variables

A Addr OxFF...F
gs

Sloppy use of printf

void main(int argc, char™ argv(]) argV[1] = “%s%s%s%s%s%s%s%s%s%s%s”
{

printf(argv([1]);
}

Attacker controls format string gives all sorts of control:
- Print stack contents

- Print arbitrary memory

- Write to arbitrary memory

stack base pointer

return address

arg1: 0x08048464

arg2: 0x08048468

arg3: 0x0804847f

% S % le

Format specification encoded by special % characters

Format Specifiers

Parameter Meaning Passed as
%d decimal (int) value
%u unsigned decimal (unsigned int) value
FX hexadecimal (unsigned int) value
%s string ((const) (unsigned) char) reference
%$n number of bytes written so far, (* int) reference

The %n format specitier

- %n format symbol tells printf to write the number of characters that have been printed
* Argument of printf isinterpreted as a destination address

« printf (“overflow this!%n”, &myVar);
* Writes 14 into myVar.

The %n format specitier

- %n format symbol tells printf to write the number of characters that have been printed
* Argument of printf isinterpreted as a destination address

« printf (“overflow this!%n”, &myVar);
* Writes 14 into myVar.

 What if printf does not have an argument?

« char buf[1l6] = “Overflow this!%n”;
« printf(buf);

. Store the value 14 in buf
. Store the value 14 on the stack

(specify where)

. Replace the string Overflow with 14
. Something else

fun with printf: what's the output of the following
statements?

printf(“100% dive into C!”)
printf(“100% samy worm”);
printf(“%d %d %d %d”);

printf(“%d %s);

printf(“100% not another segfault!”);

Viewing the stack

We can show some parts of the stack memory by using a format string like

this:
C code printf ("%08x.%08x.%08x.%08x.%08x\n") ;
Output 40012980.080628c4.bfff£f7a4.00000005.08059c04

instruct printf:
* retrieve 5 parameters
* display them as 8-digit padded hexademical numbers

Using %n to Mung Return Address

This portion contains
enough % symbols

to advance printf’s Buffer with attacker-supplied
internal stack pointer

\ input string
>\ \ N
N

“... attackString%n”, attack code &RET
A "\
— 7 X) ——> X
Number of characters in Overwrite location under printf’s stack
attackString must be pointer with RET address;
equal to ... what? printf(buffer) will write the number of
characters in attackString into RET

eturn
execution to
this address

* See "Exploiting Format String Vulnerabilities” for details

If your program has a format string bug, assume that the attacker

can learn all secrets stored in memory, and assume that the
attacker can take control of your program.

buffer —

pre

next

<

struct Node

{

}:

struct Node xnext;
struct Node xpre;

// remove Node p from the linked list

q = p—>pre;
g—->next = p—->next;

(1
(2

Address B: 0x804B22C0

Address A: 0x804B2220

eap based bufter overtlow

Heap stores “chunks” of memory using
inked lists

when malloc is called:
* stores “meta data” about the chunk
right above the newly allocated block
metadata can be exploited to corrupt
memory

Figure by Kevin Du, Syracuse University

Heap Overtlow Exploit Techniques

pre

next

buffer —

A

struct Node

{
struct Node x*next;
struct Node xpre;

}i

// remove Node p from the linked list
q = p—>pre; (1]
g->next = p->next; (2

Address B: 0x804B22C0

Address A: 0x804B2220

Overwrite next pointer in linked list

effectively the same as overwriting the return
address on the stack

when the malloc function is next involved: control
flow is hijacked to point to the attackers code

Heap Buffer Overflow

* a buffer on the heap is not checked

» attacker writes beyond the end of the allocated
chunk and corrupts the pointer.

Lots of different variations:
e use after free

* double free

e unlink exploit

e shrinking free chunks..
* house of spirit...

Heaps

ptmalloc2 Linux, HURD (glibc)

SysV AT&T IRIX, SunOS

Yorktown AIX

RtIHeap Windows

tcmalloc Google and others
jemalloc FreeBSD, NetBSD, Mozilla

phkmalloc *BSD

ptmalloc

e Extremely popular malloc (default in glibc)

e Stores memory management metadata inline with user data
e Stored as small chunks before and after user chunks

* Aggressive optimizations
* Maintains lists of free chunks binned by size
* Merges consecutive free chunks to avoid fragmentation

Use after free

The state of the particular fastbin progresses as:

Consider the sample code: 1. ‘' freed.
head -> a -> tail
2. 'b' freed.
char *a = malloc(20); // Oxed4b010
head -> b -> a -> tail
char *b = malloc(20); // Oxed4b030
char *c = malloc(20); // Oxed4b050 e
char *d = malloc(20); // 0xe4b070 ead=> = b= a=>tail
4. 'd' freed.
free(a); head ->d->c¢->b ->a->tall
free(b); 5. 'malloc’ request.
free(c); head -> ¢ ->b -> a->tail ['d' is returned]
free(d); 6. 'malloc' request.
head -> b -> a -> tail ['¢’ is returned]
a = malloc(20); // Oxed4b070 7. ‘malloc request.
b = malloc(20); // Oxe4b050 _ .
head -> a -> tail ['b' is returned]
c = malloc(20); // Oxe4b030
8. 'malloc’ t.
d = malloc(20); // Oxe4b010 MESSEISRES

head -> tail ['a' is returned]

Source: https://heap-exploitation.dhavalkapil.com/attacks/

Double free

The state of the particular fastbin progresses as:

. . 1. 'a' freed.
Consider this sample code:

head -> a -> tail

a = malloc(10); // 9xa04010 2 I freed.
b = malloc(10); // ©xa04030 head -> b -> a -> tail
= malloc(10); // Oxab04050 3. 'a' freed again.
head -> a->b -> a ->tail
free(a);

free(b); // To bypass "double free or corruption (fasttop! 4. ‘malloc’ request for d.

free(a); // Double Free !! head -> b -> a -> tail ['a' is returned]

5. 'malloc’ request for 'e'.

= malloc(10); /] ©xab4016 head -> a -> tail ['b' is returned |
e = malloc(10); // Oxa04030
f = malloc(10); // Oxab04010 - Same as 'd' ! 6. ‘malloc’ request for'f.

head -> tail ['a' is returned]

Source: https://heap-exploitation.dhavalkapil.com/attacks/

How we safeguard against buffer overtlows as a software
engineer?

. Make buffers (slightly) longer than necessary

. Safe string manipulation functions (other checks we can do?)

Don’t write in C. It’s the root of all evil!

. As a software programmer there’s only so much we can do... there’s

no fix.

Validating input

* Determine acceptable input, check for match --- don’t just check against list of
“non-matches”

* Limit maximum length

Watch out for special characters, escape chars.

Check bounds on integer values

Check for negative inputs

Check for large inputs that might cause overflow!

Validating input

Filenames

Disallow *, .., etc.

Command-line arguments

Even argv[0]...

Commands
* E.g., URLs, http variables., SQL

* E.g., cross site scripting, (next lecture)

