
CS 88: Security and Privacy
06: Software Security: Attacks and Defenses

09-15-2022

Announcements

Reading Quiz

Draw out a stack diagram and build your very own
shellcode attack

Information you are given:

• buffer to overflow:
• char buffer[50]
• &buffer[0] = 0xffffd88c

• $eip = 0xffffd8cc
• shellcode = 20 bytes

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x90 0x90
0x90 0x90

hijacked ret
0x90 0x90
0x90 0x90

shellcode

Draw out a stack diagram and build your very own
shellcode attack

Information you are given:

• buffer to overflow:
• char buffer[100]
• &buffer[0] = 0xffffd88c

• $eip = 0xffffd8bc
• shellcode = 20 bytes

char buffer []

local variables

saved ebp

saved ret: eip

function arguments

previous frame

0x90 0x90
0x90 0x90

hijacked ret
0x90 0x90
0x90 0x90

shellcode

Find the offset to the start
of the return address

Starting address of the
attack + padding

Start of
char buffer

hijacked
return address

Buffer Overflow: Causes

• Typical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually

masquerading as data

• Trick vulnerable program into passing control to it
• Overwrite saved EIP, function callback pointer, etc.

slide 9

Buffer Overflows: can exploit…

A. pointer assignment & memory allocation, de-allocation

B. function pointers

C. calls to library routines

D. general purpose registers

E. format strings

slide 10

Attack code

(1) Change the return address to point to the
attack code. After the function returns,
control is transferred to the attack code.

(2) … or return-to-libc: use existing
instructions in the code segment such as
system(), exec(), etc. as the attack code.

①

“/bin/sh”

system()

slide 12

Other Control Hijacking Opportunities: return-to-libc
attack

pointer var (ptr)
buffer (buf)
stack base pointer
return address

args (funcp)

② set stack pointers to
return to a dangerous
library function

pointer var (ptr)
buffer (buf)
stack base pointer
return address
args (funcp)

Attack code Syscall pointer

Global Offset Table

①

②

Other Control Hijacking Opportunities: Function Pointers

slide 13

(1) Change a function pointer to point to the
attack code

(2) Any memory, on or off the stack, can be
modified by a statement that stores a
compromised value into the compromised
pointer. strcpy(buf, str); *ptr = buf[0];

Attack code

Fake return
address
Fake SFP

Other Control Hijacking Opportunities: Frame Pointer

Change the caller’s saved frame pointer to point to
attacker-controlled memory.
Caller’s return address will be read from this memory.

slide 14

Arranged like a
real frame

pointer var (ptr)
buffer (buf)
stack base pointer
return address
args (funcp)

15

Some Unsafe C lib Functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf (const char *format, …)
printf (conts char *format, …)

Avoid strcpy, …

• We have seen that strcpy is unsafe
• strcpy(buf, str) simply copies memory contents into buf starting from *str until “\0” is

encountered, ignoring the size of buf
• Avoid strcpy(), strcat(), gets(), etc.

• Use strncpy(), strncat(), instead

• Even these are not perfect… (e.g., no null termination)
• Always a good idea to do your own validation when obtaining input from

untrusted source
• Still need to be careful when copying multiple inputs into a buffer

slide 17

Cause of vulnerability: No Range Checking

• strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into buf starting from
*str until “\0” is encountered, ignoring the size of area allocated to buf

slide 18

strncpy(char *dest, const char *src, size_t n)
• copy no more than n characters from source to destination
• contingent on? the right value of n!

• Potential overflow in htpasswd.c (Apache 1.3):

… strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw); …

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

A. The fix ensures that there are no
vulnerabilities

B. The vulnerabilities are still
present.

Integer overflows

A) This code is free
from integer
overflow
vulnerabilities.

B) Integer
vulnerabilities
still exist.

Width Overflows

uint32_t x = 0x10000;
uint16_t y = 1;
uint16_t z = x + y; // z = ?

• Width overflows occur when assignments are made to variables that can't store the
result

• Integer promotion

• Computation involving two variables x, y where width(x) > width(y)

• y is promoted such that width(x) = width(y)

Sign Overflows

int f(char* buf, int len) {
char dst_buf[64];
if (len > 64)

return 1;
memcpy(dst_buf, buf, len);
return 0;

}

• Sign overflows occur when an unsigned variable is treated as signed, or vice-versa
• Can occur when mixing signed and unsigned variables in an expression
• Or, wraparound when performing arithmetic

memcpy(void *, void *, unsigned int)

Heartbleed vulnerability

Heartbleed vulnerability

slide 27

Home-brewed range-checking string copy
void notSoSafeCopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}
void main(int argc, char *argv[]) {

if (argc==2)
notSoSafeCopy(argv[1]);

}

Off-By-One Overflow

This will copy 513
characters into
buffer. Oops!

What damage can an off by 1 error really do?

A) no damage
B) change the value of ebp
C) execute shellcode
D) something else (be prepared to discuss)

If your program has a buffer overflow bug, you should assume
that the bug is exploitable and an attacker can take control of

your program.

What’s wrong with this code?

A. Nothing
B. Buffer overflow
C. Integer overflow
D.Race Condition

Other overflow targets

• Format strings in C
• Heap management structures used by malloc

Format String Vulnerabilities

Variable arguments in C

In C, we can define a function with a variable number of arguments

void printf(const char* format,….)

Usage:
printf(“hello world”);
printf(“length of %s = %d \n”, str, str.length());

format specification encoded by special % characters

fun with format strings

printf(“you scored %d\n”, score);

stack base pointer
return address
arg1: 0x08048464
arg2: score

\0 \n d

% d e

r o c s

u o y

printf() function

Implementation of printf

fun with format strings

printf(“a %s costs $%d\n”, item, price);

stack base pointer
return address
arg1: 0x08048464
arg2: item
arg3: price

\0 \n d %

$ s t

s o c

s % a

printf() function

Closer look at the stack

Sloppy use of printf

stack base pointer
return address
arg1: 0x08048464
arg2: 0x08048468
arg3: 0x0804847f
…..
….

.. .. s %

s %

s % s

% s %

Format specification encoded by special % characters

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

The %n format specifier

• %n format symbol tells printf to write the number of characters that have been printed
• Argument of printf is interpreted as a destination address

• printf (“overflow this!%n”, &myVar);
• Writes 14 into myVar.

• What if printf does not have an argument?

• char buf[16] = “Overflow this!%n”;
• printf(buf);

A. Store the value 14 in buf
B. Store the value 14 on the stack

(specify where)
C. Replace the string Overflow with 14
D. Something else

fun with printf: what’s the output of the following
statements?

printf(“100% dive into C!”)

printf(“100% samy worm”);

printf(“%d %d %d %d”);

printf(“%d %s);

printf(“100% not another segfault!”);

Viewing the stack

instruct printf:
• retrieve 5 parameters
• display them as 8-digit padded hexademical numbers

Output

C code

slide 47

Using %n to Mung Return Address

RET“… attackString%n”, attack code &RET

Overwrite location under printf’s stack
pointer with RET address;
printf(buffer) will write the number of
characters in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied
input string

Number of characters in
attackString must be
equal to … what?

• See “Exploiting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly 4M bytes (taking them from the
stack). Attack string should contain enough “%Mx” so that the number of characters printed is equal to
the most significant byte of the address of the attack code.
Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus replacing RET with
the address of attack code byte by byte.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

If your program has a format string bug, assume that the attacker
can learn all secrets stored in memory, and assume that the
attacker can take control of your program.

Heap based buffer overflow

• Heap stores “chunks” of memory using
inked lists

• when malloc is called:
• stores “meta data” about the chunk

right above the newly allocated block
• metadata can be exploited to corrupt

memory

Figure by Kevin Du, Syracuse University

Heap Overflow Exploit Techniques

Overwrite next pointer in linked list
effectively the same as overwriting the return
address on the stack
when the malloc function is next involved: control
flow is hijacked to point to the attackers code

Heap Buffer Overflow
• a buffer on the heap is not checked
• attacker writes beyond the end of the allocated

chunk and corrupts the pointer.

Lots of different variations:
• use after free
• double free
• unlink exploit
• shrinking free chunks..
• house of spirit…

Heaps

Implementation Platform

ptmalloc2 Linux, HURD (glibc)

SysV AT&T IRIX, SunOS

Yorktown AIX

RtlHeap Windows

tcmalloc Google and others

jemalloc FreeBSD, NetBSD, Mozilla

phkmalloc *BSD

ptmalloc

• Extremely popular malloc (default in glibc)
• Stores memory management metadata inline with user data
• Stored as small chunks before and after user chunks

• Aggressive optimizations
• Maintains lists of free chunks binned by size
• Merges consecutive free chunks to avoid fragmentation

Use after free

Source: https://heap-exploitation.dhavalkapil.com/attacks/

Double free

Source: https://heap-exploitation.dhavalkapil.com/attacks/

How we safeguard against buffer overflows as a software
engineer?

A. Make buffers (slightly) longer than necessary

B. Safe string manipulation functions (other checks we can do?)

C. Don’t write in C. It’s the root of all evil!

D. As a software programmer there’s only so much we can do… there’s

no fix.

Validating input

• Determine acceptable input, check for match --- don’t just check against list of
“non-matches”
• Limit maximum length
• Watch out for special characters, escape chars.
• Check bounds on integer values
• Check for negative inputs
• Check for large inputs that might cause overflow!

Validating input

• Filenames
• Disallow *, .., etc.
• Command-line arguments
• Even argv[0]…
• Commands
• E.g., URLs, http variables., SQL
• E.g., cross site scripting, (next lecture)

