
CS 88: Security and Privacy
02: Buffer Overflows

09-06-2022



Announcements

• Clickers available through the bookstore and TAP
• Lab 0 due today
• Reading quizzes count from this week
• Midterm dates on edstem later today



Reading Quiz



Today

• Design Principles of Security
• Software Vulnerabilities
• Recap functions and the stack
• Recap assembly instructions
• Stack Buffer Overflow



Last Class: Design Principles of Security

• Least Privilege
• Use Fail-Safe Defaults 
• Separation of Privilege/Separation of responsibility
• Defense in Depth
• Complete Mediation: check access to every object
• Security not through obscurity
• Design Security as a core principal
• Keep it simple silly 
• Ease of use

-Saltzer, J. “Protection and the Control of Information Sharing in MULTICS”, CACM - 1974



Defense in Depth

• The notion of layering multiple types of 
protection together 
• e.g., the Theodosian Walls of Constantinople: 
• Moat -> wall -> depression -> even bigger wall 
• Idea: attacker needs to breach all the defenses to 

gain access 

• But defense in depth isn't free
• You are throwing more resources at the problem



Password authentication

• People have a hard time remembering multiple strong 
passwords, so they reuse them on multiple sites 
• Consequence: security breach of one site causes account 

compromise on other sites 
• Solution: password manager 
• Remember one strong password, which unlocks access to site 

passwords 

• Solution: two-factor authentication 
• Need both correct password and separate device to access account

• Free advice: to protect yourself, use a password manager and 
two-factor authentication



Slide #13-11

Least Privilege

• Every program and every user of the system should 
operate using the least set of privileges necessary 
to complete the job

• A subject should be given only those privileges 
necessary to complete its task
– Function, not identity, controls
– Rights added as needed, discarded after use
– Minimal protection domain



Does this follow the principle of least privilege?

A. Yes
B. No
C. Maybe (Be prepared 

to explain)



Ensuring Complete Mediation

• To secure access to some capability/resource, construct a 
reference monitor 
• Single point through which all access must occur 

• E.g.: a network firewall 
• Desired properties: • Un-bypassable (“complete mediation”) •
• Tamper-proof (is itself secure) 
• Verifiable (correct) 

• One subtle form of reference monitor flaw concerns race conditions



A Failure of Complete Mediation



Time of Check to Time of Use Vulnerability: Race 
Condition



Security Reviews

• Least Privilege
• Use Fail-Safe Defaults 
• Separation of Privilege/Separation of responsibility
• Defense in Depth
• Complete Mediation: check access to every object
• Security not through obscurity
• Design Security as a core principal
• Keep it simple silly 
• Ease of use



Software Security



When is a program secure?

A. When it does what we want it to do
B. When we ensure that bad inputs do not result in unintended 

functionality
C. We need B + some more safeguards (be prepared to explain)
D. We can never have a secure program



Software Security
• Secure design and implementation 
• Popular approach to software: black box approach
• Build defenses around vulnerable software – easily circumvented



When is a program secure?

• Formal approach: When it does exactly what it should
• not more 
• not less

• But how do we know what it is supposed to do?



When is a program secure?

• Formal approach: When it does exactly what it should
• not more 
• not less

• But how do we know what it is supposed to do?
• somebody tells us (do we trust them?)
• we write the code ourselves (what fraction of s/w have you written?)



When is a program secure?

• Pragmatic approach: when it doesn’t do bad things
• Often easier to specify a list of “bad” things:
• delete or corrupt important files (integrity)
• crash my system (availability)
• send my password over the internet (confidentiality)
• send phishing email



When is a program secure?

• But .. what if the program doesn’t do bad things, but could?

• is it secure?



Weird machines

• complex systems contain unintended functionality

• attackers can trigger this unintended functionality
• i.e. they are exploiting vulnerabilities



What is a software vulnerability?

• A bug in a program that allows an unprivileged user 
capabilities that should be denied to them. 

• There are a lot of types of vulnerabilities
• bugs that violate “control flow integrity”
• why? lets attacker run code on your computer!

• Typically these involve violating assumptions of the 
programming language or its run-time



Exploiting vulnerabilities (the start)

• Dive into low level details of how exploits work
• How can a remote attacker get a victim program to execute their 

code?

• Threat model: victim code is handling input that comes from across 
a security boundary

• what are examples of this?

• Security policy: want to protect integrity of execution and 
confidentiality of data from being compromised by malicious and 
highly skilled users of our system. 



Stack buffer overflows

• Understand how buffer overflow vulnerabilities can be exploited

• Identify buffer overflows and asses their impact

• Avoid introducing buffer overflow vulnerabilities

• Correctly fix buffer overflow vulnerabilities



Buffer Overflows

• An anomaly that occurs when a program writes/reads data 
beyond the boundary of a buffer

• Canonical software vulnerability
• ubiquitous in system software
• OSes, web servers, web browsers

• If your program crashes with memory faults, you probably have 
a buffer overflow vulnerability



29

https://nvd.nist.gov/vuln/search

Common Vulnerabilities and Exposures
(CVE): security flaw that is publicly known 

Critical Systems are written in 
C/C++
• OS kernels
• High-performance servers
• Apache, MySQL

• Embedded Systems
• IoT deivices, “smart” 

vehicles, the MARs 
rover..



CS 31 Recap



Memory

• Abstraction goal: make every 
process think it has the same 
memory layout.
• MUCH simpler for compiler if the 

stack always starts at 0xFFFFFFFF, 
etc.

• Reality: there’s only so much 
memory to go around, and no two 
processes should use the same 
(physical) memory addresses.

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track 
of who’s using each memory region.

Text

Data

Stack

OS

Heap



Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Physical Memory: The contents of 
the hardware (RAM) memory.
Managed by OS.  Only ONE of these 
for the entire machine!

Virtual (logical) Memory: The 
abstract view of memory given to 
processes.  Each process gets an 
independent view of the memory.

Address Space:
Range of addresses for 
a region of memory.

The set of available 
storage locations.

0x0

0x…
(Determined by amount of  installed RAM.)

0x0

0xFFFFFFFF
Virtual address space 
(VAS): fixed size.



Memory

• Behaves like a big array of bytes, 
each with an address (bucket #).

• By convention, we divide it into 
regions.

• The region at the lowest 
addresses is usually reserved for 
the OS.

0x0

0xFFFFFFFF

Operating system

Slide 33



NULL: A special pointer value.

• NULL is equivalent to pointing at 
memory address 0x0.  This address 
is NEVER in a valid segment of your 
program’s memory.
• This guarantees a segfault if you try to 

deref it.
• Generally a good ideal to initialize 

pointers to NULL.

0x0

0xFFFFFFFF

Operating system



What happens if we launch an attack where we load an 
instruction to execute at 0x0

A. Nothing will happen, this region is 
mapped to the NULL pointer, which 
does not have any effect

B. There will be some effect, but not 
necessarily devastating

C. This will have a devastating effect. 

0x0

0xFFFFFFFF



Memory - Text

• After the OS, we store the 
program’s code.

• Instructions generated by the 
compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Slide 36



Memory – (Static) Data

• Next, there’s a fixed-size region 
for static data.

• This stores static variables that 
are known at compile time.
• Global variables

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Slide 37



Memory - Stack

• At high addresses, we keep the 
stack.

• This stores local (automatic) 
variables.
• The kind we’ve been using in C so 

far.
• e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Slide 38



Memory - Stack

• The stack grows upwards towards 
lower addresses
(negative direction).

• Example: Allocating array
• int array[4];

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Slide 39



Memory - Heap

• The heap stores 
dynamically allocated 
variables.

• When programs explicitly 
ask the OS for memory, it 
comes from the heap.
• malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Slide 40



Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

funcA:
…
call funcB
… 

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…

Slide 41



Process memory layout

0x0

0xFFFFFFFF

Operating system

Stack
X:

.text

.data

Heap

Slide 42

.bss

Environment variables
Command line arguments

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section

global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments



Process memory layout

Slide 43

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section

global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

int i = 0;
int main()
{

char *ptr = malloc(sizeof(int));
char buf[1024]
int j;
static int y;

}



Process memory layout

Slide 44

.text
• Machine code of executable

.data
• Global initialized variables

.bss
• Below Stack Section

global uninitialized vars

heap
– Dynamic variables

stack
– Local variables
– Function call data

Env
– Environment variables
– Program arguments

int i = 0;
int main()
{

char *ptr = malloc(sizeof(int));
char buf[1024]
int j;
static int y;

}

• i -> data segment
• ptr -> stack

• data allocated on heap
• buf -> stack
• j -> stack
• y -> bss



X86: The De Facto Standard

• Extremely popular for desktop computers
• Alternatives

• ARM: popular on mobile
• MIPS: very simple
• Itanium: ahead of its time

• CISC
• 100 distinct opcodes

• Register poor
• 8 registers of 32 bits
• only 6 general purpose

• instructions are variable length
• not aligned at 4 byte boundaries

• lots of backward compatibilities
• defined in late 70s
• exploit code that noone pays attention to

• we will use 32 bit because its more convenient.



Compilation Steps (.c to a.out)

text

text

binary

executable 
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code  
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of 
intermediate compilation
steps using different gcc flags

Slide 46

machine code instructions



Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions
• some bits: encode the instruction (opcode bits)
• others encode operand(s)

(eg)   01001010 opcode operands
01 001 010

ADD %r1 %r2

• different bits fed 
through different 
CPU circuitry:

MUXRegister #0

Register #1

Register #2
. . . MUX

A
L
U

01 |  001 | 010

47

0:

1:

2:

3:

4:

…

N-1:

(Memory)



Assembly Code

text

text

binary

executable 
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Human Readable Form 
of Machine Code

Slide 48

machine code instructions



What is “assembly”?

Assembly is the 
“human readable” 
form of the 
instructions a 
machine can 
understand.

push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

objdump –d a.out



Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

Slide 50

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions



Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

int main() {
int a = 10;
int b = 20;

a = a + b;

return a;
}

Slide 51



Processor State in Registers

• Information about 
currently executing 
program
• Temporary data

( %eax - %edi )
• Location of runtime stack

( %ebp, %esp )
• Location of current code 

control point ( %eip, … )
• Status of recent tests 

%EFLAGS
( CF, ZF, SF, OF )

%eip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Slide 52



General purpose Registers
Six are for instruction operands

Can store 4 byte data or address value

The low-order 2 bytes  %ax is the low-order 16 bits of %eax

Two low-order 1 bytes %al is the low-order 8 bits of %eax

May see their use in ops involving shorts or chars

Register 
name

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip

%EFLAGS

bits: 
31

16 15      
8

7      
0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

%esp %sp

%ebp %bp Slide 53



Assembly Programmer’s View of State
CPU

Memory

Addresses

Data

Instructions

Registers:  
PC: Program counter (%eip)
Condition codes (%EFLAGS)
General Purpose (%eax - %ebp)

Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
data
instrs
stack

0xffffffff

32-bit Registers

BUS

Slide 54



Types of IA32 Instructions

• Data movement
• Move values between registers and memory
• Example:  movl

• Load: move data from memory to register

• Store: move data from register to memory

Slide 55



Instruction Syntax

subl $16, %ebx

movl (%eax), %ebx

Examples: • Instruction ends with 
data length
• opcode, src, dst
• Constants preceded by 

$
• Registers preceded by 

%
• Indirection uses ( ) 



Addressing Mode: Memory

• Accessing memory requires you to specify which address you 
want.
• Put address in a register.
• Access with () around register name.

• movl (%ecx), %eax
• Use the address in register ecx to access memory, store result in 

register eax

Slide 57



Addressing Mode: Memory

• movl (%ecx), %eax
• Use the address in register ecx to access memory, store result in 

register eax

(Memory)

name value

%eax 0

%ecx 0x1A68

…

CPU Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Slide 58



Addressing Mode: Memory

• movl (%ecx), %eax
• Use the address in register ecx to access memory, store result in 

register eax

name value

%eax 0

%ecx 0x1A68

…

CPU Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the 
address in ecx.

Slide 59



0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• movl (%ecx), %eax
• Use the address in register ecx to access memory, store result in 

register eax

name value

%eax 42

%ecx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the 
address in ecx.

2. Copy value at that 
address to eax.

Slide 60



Addressing Mode: Displacement

• Like memory mode, but with constant offset
• Offset is often negative, relative to %ebp

• movl -12(%ebp), %eax
• Take the address in ebp, subtract twelve from it, index into memory 

and store the result in eax

Slide 61



Addressing Mode: Displacement

• movl -12(%ebp), %eax
• Take the address in ebp, subtract twelve from it, index into memory 

and store the result in eax

(Memory)

name value

%eax 0

%ecx 0x1A68

%ebp 0x1A70

…

CPU Registers

1. Access address:
0x1A70 – 12  => 0x1A64

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Slide 62



0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C

0x1A70 Not this!

…

0xFFFFFFFF:

Addressing Mode: Displacement

• movl -12(%ebp), %eax
• Take the address in ebp, subtract three from it, index into memory and 

store the result in eax

(Memory)

name value

%eax 11

%ecx 0x1A68

%ebp 0x1A70

…

CPU Registers

1. Access address:
0x1A70 – 12  => 0x1A64

2. Copy value at that 
address to eax.

Slide 63



What will memory look like after these 
instructions?

x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

movl -16(%ebp),%eax

sall $3, %eax

imull $3, %eax

movl -12(%ebp), %edx

addl -8(%ebp), %edx

addl %edx, %eax

movl %eax, -8(%ebp) 

name value

%eax ?

%edx ?

%ebp 0x1270

address value

0x1260 2

0x1264 3  

0x1268 2

0x126c

0x1270
…

Registers
Memory

Slide 64



What will memory look like after these 
instructions?

x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

movl -16(%ebp),%eax

sall $3, %eax

imull $3, %eax

movl -12(%ebp), %edx

addl -8(%ebp), %edx

addl %edx, %eax

movl %eax, -8(%ebp) 
address value

0x1260 53

0x1264 3  

0x1268 24

0x126c

0x1270
…

address value

0x1260 53

0x1264 3  

0x1268 2

0x126c

0x1270
…

address value

0x1260 2

0x1264 16  

0x1268 24

0x126c

0x1270
…

address value

0x1260 2

0x1264 3  

0x1268 53

0x126c

0x1270
…

A: B: C:

D:

Slide 65



Solution
x is 2 at %ebp-8,  y is 3 at %ebp-12,  z is 2 at %ebp-16

movl -16(%ebp), %eax

sall $3, %eax

imull $3, %eax

movl -12(%ebp), %edx

addl -8(%ebp), %edx

addl %edx, %eax

movl %eax, -8(%ebp)

Equivalent C code:

x = z*24 + y + x;

name value

%eax

%edx

%ebp 0x1270

0x1260 2 

0x1264 3

0x1268 2

0x126c

0x1270

Slide 66



Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

Slide 67



Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

Slide 68



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Must adjust %esp, %ebp on call / return.

caller

%esp

%ebp …

Slide 69



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
1. pushl %ebp

caller

%esp

…%ebp

caller’s %ebp value

Slide 70



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
1. pushl %ebp
2. Set %ebp = %esp

caller

%esp

…%ebp

caller’s %ebp value

Slide 71



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• Immediately upon calling a function:
1. pushl %ebp
2. Set %ebp = %esp
3. Subtract N from %esp

caller

%esp

…%ebp

caller’s %ebp value

Callee can now execute.

Slide 72



callee

Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:

caller

%esp

…%ebp

caller’s %ebp value

Slide 73



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
1. set %esp = %ebp

caller

%esp

…%ebp

caller’s %ebp value

Slide 74



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
1. set %esp = %ebp
2. popl %ebp

caller

%esp

…%ebp

caller’s %ebp value

Slide 75



Frame Pointer

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in %esp and %ebp

• To return, reverse this:
1. set %esp = %ebp
2. popl %ebp

caller

%esp

…%ebpBack to where we started.

IA32 has another convenience 
instruction for this: leave

Slide 76



callee

caller

%esp

…%ebp

caller’s %ebp value

pushl %ebp (store caller’s frame pointer)

Frame Pointer: Function Call

caller

%esp

…%ebp

Initial state

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %esp, %ebp
(establish callee’s frame pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

subl $SIZE, %esp
(allocate space for callee’s locals)

Slide 77



caller

%esp

…%ebp

popl %ebp (restore caller’s frame pointer)

Frame Pointer: Function Return

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %ebp, %esp
(restore caller’s stack pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

Want to restore caller’s frame.

IA32 provides a convenience 
instruction that does all of this:
leave

Slide 78



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)

Function B

Slide 79



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip

Slide 80



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region
6. (resume funcA)

Slide 81



Functions and the Stack

Program 
Counter (%eip)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

Slide 82



Functions and the Stack

Program 
Counter (%eip)

Function A

…

Stack Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

call

leave
ret

Return address:

Address of the instruction we should 
jump back to when we finish (return 
from) the currently executing function.

Slide 83



Implementing a function call

Stack
data

main:
…
subl $8, %esp
movl $2, 4(%esp)
movl $l, (%esp)
call    foo
addl $8, %esp
…

(main) (foo)

foo:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl $3, -4(%ebp)
movl 8(%ebp), %eax
addl $9, %eax
leave
ret 

eip
eip
eip
eip

eip

main 
+42

main
ebp

esp

ebp

esp

21

esp esp%eax 110

eip
eip
eip
eip
eip
eip
eip

3

esp

ebp

eip



Arrays

bar:
pushl %ebp
movl %esp, %ebp
subl $5, %esp
movl 8(%ebp), %eax
movl %eax, 4(%esp)
leal -5(%ebp), %eax
movl %eax, (%esp)
call   strcpy
leave
ret

(bar) caller
eip+2

caller
ebp

void bar(char * in){
char name[5];
strcpy(name, in);

}

&in

.text .data

HEAP

esp

ebp

‘D’
0x44

‘r’
0x72

‘e’
0x65

‘w’
0x77

‘\0’
0x00



Data types / Endianness

• x86 is a little-endian architecture

%eax 0xdeadbeef

pushl %eax

esp

0xde0xad0xbe0xef

esp

4 bytes 1 1 1 1



Putting it all together…

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee
…

First Argument to Callee
Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s 
frame.

Callee’s
frame.

2. push arguments

Slide 87

Caller Code
1. save address of next instruction

Callee Code
1. push frame pointer
2. move stack pointer to frame pointer
3. increase stack pointer



Register Convention

• Caller-saved: %eax, %ecx, %edx
• If the caller wants to preserve these registers, it must save them prior 

to calling callee
• callee free to trash these, caller will restore if needed

• Callee-saved: %ebx, %esi, %edi
• If the callee wants to use these registers, it must save them first, and 

restore them before returning
• caller can assume these will be preserved

This is why I’ve told you to 
only use these three registers.

Slide 88



Buffer Overflows



When is a program secure?

• Formal approach: When it does exactly what it should
• not more 
• not less

• But how do we know what it is supposed to do?



Example 1

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
char nice[] = “is nice.”;
char name[8];
gets(name);
printf(“%s %s\n”, name, nice);
return 0;

} 

name[0-3] 

name[4-7]

nice[0-3] 

nice[4-7]

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

0x0

0xFFFFFFFF



Function call stack

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
char nice[] = “is nice.”;
char name[8];

gets(name);
printf(“%s %s\n”, name, nice);
return 0;

} 

name[0-3]

name[4-7]

nice[0-3] 

nice[4-7]

..

..

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

What happens if we read a long name?

A. Nothing bad will happen
B. Something nonsensical will result
C. Something terrible will result



Function call stack

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv){
char nice[] = “is nice.”;
char name[8];

gets(name);
printf(“%s %s\n”, name, nice);
return 0;

} 

name[0-3]

name[4-7]

nice[0-3] 

nice[4-7]

..

..

saved ebp

saved ret: eip

argc

argv

older stack frames

%esp

%ebp

What happens if we read a long name?

It it is not null terminated it can read a lot more of the stack!







Buffer Overflow example



Buffer Overflow example

buf[0-3]

0xdeadbeef

saved ebp

saved ret: eip

0xaaaaaaaa

0xbbbbbbbb

argv[1]

%ebp

%esp



Buffer Overflow example: If the first input is 
“AAAAAAAAAAAAAAAA”

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

%ebp

%esp



Buffer Overflow example: If the first input is 
“AAAAAAAAAAAAAAAA”

0x41414141

0x41414141

0x41414141

0x08049b95

0x41414141

0x41414141

0x41414141

%ebp

%esp
0x08049b95

%eip



Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret

0x41414141

shellcode!

%ebp

%esp

%eip

Jump to attacker supplied code
where?
• put code in the string
• jump to start of the string



Better Hijacking Control

0x41414141

0x41414141

0x41414141

hijacked ret

0x41414141

shellcode!

%ebp

%esp

%eip

Jump to attacker supplied code
where?
• put code in the string
• jump to start of the string


