
CS 88: Security and Privacy
02: Security Mindset

09-01-2022

Reading Quiz

Announcements

• Please sign the ethics form this week to continue
• Update your preferences for the midterm exams.
• Please choose partnerships for Lab 1 (EdStem)

Recap: What is “Security”?

Security is about
computing or communicating

in the presence of adversaries.

10

• Normally, we are concerned with the achieving correctness

• e.g., does this software achieve the desired behavior

• Security is a form of correctness

• does this software prevent “undesired” behavior?

• Security involves an adversary who is active and malicious

• Attackers seek to circumvent protective measures

Slide 11

Recap: What is “Security”?

• General security goals: “CIA”
• Confidentiality
• Integrity
• Availability

Slide 12

Recap: What is “Security”?

Confidentiality (Privacy)

Confidentiality is concealment of information

Slide 13
Adapted from Franzi Roesner, Yoshi Kohno

Integrity

Integrity is prevention of unauthorized changes

Slide 14
Adapted from Franzi Roesner, Yoshi Kohno

Availability

Availability is the ability to use information or resources

Slide 15
Adapted from Franzi Roesner, Yoshi Kohno

• General security goals: “CIA”
• Confidentiality
• Integrity
• Availability

• …
• Authenticity
• Accountability and non-repudiation
• Access Control
• Privacy of collected information

Slide 16

Recap: What is “Security”?

Today

• Security Policy & Mechanism
• Examples of security attacks

• Design principles of security
• Software Security

Security: System View: not just for computers

Slide 18

Functionality & Security

• A system normally has a desired functionality: what (“good”) things it
should do in the absence of adversaries.
• The system also normally has a security policy or security objective:

what (“bad”) activities or events should be prevented and/or
detected?

19

Security Policy

• Usually stated in terms of
1. Principals – actors or participants (perhaps in terms of their roles, including

Adversary)
2. Set of impermissible actions (or states)
3. Relating to (classes of) objects

20

Security Mechanism

• AKA “Security Control”
• Component, technique, or method for (attempting to) achieve or

enforce security policy.

21

Come up with security policies for the following systems

1. Voting in an election
2. Access to /etc/shadow file on Unix Machines
3. Email delivery to Swat Mail users
4. Text messages sent from Alice to Bob

22

• Security Policy is stated as:
1. Principals – actors or participants (perhaps in terms of their roles,

including Adversary)
2. Set of impermissible actions (or states)
3. Relating to (classes of) objects

Example Security Policy statements

• “Every registered voter may vote at most once.”
• ”Only an administrator may modify this file.”
• ”The recipient of an email shall be able to authenticate its

sender.”
• ”Only the sender and receiver of a text message can know its

contents.”

23

Come up with security mechanisms for the following
systems
1. Voting in an election
2. Access to /etc/shadow file on Unix Machines
3. Email delivery to Swat Mail users
4. Text messages sent from Alice to Bob

24

Security Mechanism is stated as:
• Component, technique, or method for (attempting to) achieve or enforce

security policy.

Security Mechanism

1. Voting in an election
2. Access to /etc/shadow file on Unix Machines
3. Email delivery to Swat Mail users
4. Text messages sent from Alice to Bob

Example Mechanisms
• Smart card for voter (so vote at most once)
• Password for sysadmin
• Digital signature on email
• Encryption on text message

25

Two types of security mechanisms

• Prevention: keep security policy from being violated.
• Examples: Fence, password, encryption

• Detection: Detect when security policy is violated.
• Examples: Motion sensor, tamper-evident seal, storing hash of executable,

virus scanner

26

Goal of Prevention

• to stop the "bad thing" from happening at all
• if prevention works its great
• E.g. if you write in a memory-safe language (like Python) you are immune

from buffer overflow exploits
• if prevention fails, it can fail hard
• E.g. $68M stolen from a Bitcoin exchange, can’t be reversed

Detection & Recovery

• A detection mechanism often comes with an associated recovery
mechanism.
• E.g.: Remove intruder, remove virus, load files from backup.

• Detection may involve deterrence:
• (Adversary risks being identified & being held accountable for security

breach), which may help with prevention.

28

Detection & Response

• Detection: See that something is going wrong
• Response: Do something about it
• Example: Reverse the harmful actions (restore from backup),
• prevent future harm (block attacker)
• Need both — no point in detection without a way to respond and remediate

False Positive and False Negatives

• False positive:
• You alert when there is nothing there

• False negative:
• You fail to alert when something is there

• Cost of detection:
• Responding to false positives is not free, and if there are too many

false positives, detector gets removed or ignored
• False negatives mean a security failure

Design Principles of Security

• Least Privilege
• Use Fail-Safe Defaults
• Separation of Privilege/Separation of responsibility
• Defense in Depth
• Complete Mediation: check access to every object
• Security not through obscurity
• Design Security as a core principal
• Keep it simple silly
• Ease of use
• Detect if you can’t prevent
• Economics of Added Security (cost-benefit analysis)

-Saltzer, J. “Protection and the Control of Information Sharing in MULTICS”, CACM - 1974

Defense in Depth

• The notion of layering multiple types of
protection together
• e.g., the Theodosian Walls of Constantinople:
• Moat -> wall -> depression -> even bigger wall
• Idea: attacker needs to breach all the defenses to

gain access

• But defense in depth isn't free
• You are throwing more resources at the problem

Password authentication

• People have a hard time remembering multiple strong
passwords, so they reuse them on multiple sites
• Consequence: security breach of one site causes account

compromise on other sites
• Solution: password manager
• Remember one strong password, which unlocks access to site

passwords

• Solution: two-factor authentication
• Need both correct password and separate device to access account

• Free advice: to protect yourself, use a password manager and
two-factor authentication

Slide #13-34

Least Privilege

• Every program and every user of the system should
operate using the least set of privileges necessary
to complete the job

• A subject should be given only those privileges
necessary to complete its task
– Function, not identity, controls
– Rights added as needed, discarded after use
– Minimal protection domain

Does this follow the principle of least privilege?

A. Yes
B. No
C. Maybe (Be prepared

to explain)

Thinking About Least Privilege

• When assessing the security of a system’s design, identify the
Trusted Computing Base (TCB).
• What components does security rely upon?
• Security requires that the TCB:

• Is correct
• Is complete (can’t be bypassed)
• Is itself secure (can’t be tampered with)

• Best way to be assured of correctness and its security?
• KISS = Keep It Simple, Silly!
• Generally, Simple = Small

• One powerful design approach: privilege separation
• Isolate privileged operations to as small a component as possible

Ensuring Complete Mediation

• To secure access to some capability/resource, construct a
reference monitor
• Single point through which all access must occur

• E.g.: a network firewall
• Desired properties: • Un-bypassable (“complete mediation”) •
• Tamper-proof (is itself secure)
• Verifiable (correct)

• One subtle form of reference monitor flaw concerns race conditions

A Failure of Complete Mediation

Time of Check to Time of Use Vulnerability: Race
Condition

• Ethereum is a cryptocurrency which offers "smart" contracts
• Like a digital vending machine:
• money + snack selection = snack dispensed

• The DAO (Distributed Autonomous Organization) venture
capital fund for crypto
• Participants could vote on "investments" that should be made
• The DAO supported withdrawals as well

Time of Check to Time of Use Vulnerability: Race
Condition

A "Feature" In The Smart Contract

• Code
• Check the balance,
• then send the money,
• then update the balance

• Recursive call :
• attacker asks the smart contract to

give Ether back multiple times
before the smart contract could
update its balance

Software Security

When is a program secure?

• Formal approach: When it does exactly what it should
• not more
• not less

• But how do we know what it is supposed to do?

When is a program secure?

• Formal approach: When it does exactly what it should
• not more
• not less

• But how do we know what it is supposed to do?
• somebody tells us (do we trust them?)
• we write the code ourselves (what fraction of s/w have you written?)

When is a program secure?

• Pragmatic approach: when it doesn’t do bad things
• Often easier to specify a list of “bad” things:
• delete or corrupt important files (integrity)
• crash my system (availability)
• send my password over the internet (confidentiality)
• send phishing email

When is a program secure?

• But .. what if the program doesn’t do bad things, but could?

• is it secure?

Weird machines

• complex systems contain unintended functionality

• attackers can trigger this unintended functionality
• i.e. they are exploiting vulnerabilities

What is a software vulnerability?

• A bug in a program that allows an unprivileged user
capabilities that should be denied to them.

• There are a lot of types of vulnerabilities
• bugs that violate “control flow integrity”
• why? lets attacker run code on your computer!

• Typically these involve violating assumptions of the
programming language or its run-time

Exploiting vulnerabilities (the start)

• Dive into low level details of how exploits work
• How can a remote attacker get a victim program to execute their

code?

• Threat model: victim code is handling input that comes from across
a security boundary

• what are examples of this?

• Security policy: want to protect integrity of execution and
confidentiality of data from being compromised by malicious and
highly skilled users of our system.

Today: stack buffer overflows

• Understand how buffer overflow vulnerabilities can be exploited

• Identify buffer overflows and asses their impact

• Avoid introducing buffer overflow vulnerabilities

• Correctly fix buffer overflow vulnerabilities

Buffer Overflows

• An anomaly that occurs when a program writes data beyond
the boundary of a buffer

• Canonical software vulnerability
• ubiquitous in system software
• OSes, web servers, web browsers

• If your program crashes with memory faults, you probably have
a buffer overflow vulnerability

Recall: Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text
static data segment

runtime heap

funcA:
…
call funcB
…

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…

Slide 54

Recall: Instructions in Memory
0x0

0xFFFFFFFF

Operating system

Stack

Text

static data segment

runtime heap

funcA:
…
call funcB
…

funcB:
pushl %ebp
movl %esp, %ebp
…

Function A

Function B

…

Slide 55

shared libs

