Network Layer

- Function: Route packets end-to-end on a network, through multiple hops
Network Layer Functions

- **Forwarding**: move packets from router’s input to appropriate router output
 - Look up in a table

- **Routing**: determine route taken by packets from source to destination.
 - Populating the table
Dijkstra’s Algorithm Example

- Goal: From the perspective of node A:
 - Determine shortest path to every destination
Dijkstra’s Algorithm – Done!

Lot more state in routing table! Final Answer

<table>
<thead>
<tr>
<th>Dest</th>
<th>Path</th>
<th>Cost D(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>C, B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>C, B, D</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>C, B, E</td>
<td>13</td>
</tr>
<tr>
<td>F</td>
<td>C, B, D, F</td>
<td>10</td>
</tr>
</tbody>
</table>

Forwarding Table

<table>
<thead>
<tr>
<th>Dest</th>
<th>Forward To</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
</tr>
</tbody>
</table>
Intra-AS Routing

• Also known as *interior gateway protocols (IGP)*

Goal:
Get traffic that is already in an AS to a destination inside that same AS.

OSPF and IS-IS are deployed most commonly today
OSPF (Open Shortest Path First)

• Link state protocol (reliable flooding of LSAs)

• “Open”: standardized, publicly available implementations

• Multiple equal-cost paths allowed (load balancing)

• Additional features:
 – OSPF messages authenticated (to prevent malicious intrusion)
 – Hierarchical OSPF for large autonomous systems.
Hierarchical OSPF

- Boundary router
- Backbone router
- Area 1
- Area 2
- Area 3
- Backbone
- Area border routers
- Internal routers
Different Organizational Structure

OSPF
- Organized around overlapping areas
- Area 0 is the core network

IS-IS
- Organized as a 2-level hierarchy
- Level 2 is the backbone
Real Protocols: OSPF vs. IS-IS

- Two different implementations of link-state routing

- **OSPF**
 - Favored by companies, datacenters
 - More optional features
 - Built on top of IPv4
 - LSAs are sent via IPv4
 - OSPFv3 needed for IPv6

- **IS-IS**
 - Favored by ISPs
 - Less “chatty”
 - Less network overhead
 - Supports more devices
 - Not tied to IP
 - Works with IPv4 or IPv6
Distance Vector Algorithm

Iterative, asynchronous:

Iteration when:
- Local link cost change
- DV update from neighbor
- Periodic timer

Distributed:

- Each node knows only a portion of global link info

each node:

- *wait* for (change in local link cost or msg from neighbor)
- *recompute* estimates
- if DV to any dest has changed,
 - *notify* neighbors
Distance Vector Example

- Same network as Dijkstra’s example, without node E.
- What I’ll show you next is routing table (of distance vectors) at each router.
Distance Vector – Round 0

Routers populate their forwarding table by taking the row minimum.
Eventually, we reach a converged state.

<table>
<thead>
<tr>
<th>Router A</th>
<th>Router B</th>
<th>Router C</th>
<th>Router D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via→</td>
<td>B</td>
<td>C</td>
<td>Via→</td>
</tr>
<tr>
<td>↓ To</td>
<td></td>
<td></td>
<td>↓ To</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>12</td>
<td>10</td>
<td>F</td>
</tr>
</tbody>
</table>
Internet/inter-AS Routing

Goal: Get traffic from one AS to another.
Hierarchical routing: Autonomous Systems
Hierarchical routing: Interconnected ASes

Interior Routers

AS-1

AS-2

AS-3

Intra-AS Routing algorithm

Inter-AS Routing algorithm

Forwarding table
AS-level Topology 2003
Source: CAIDA
Tier-1 ISP Peering

Cogent — Centurylink
AT&T — Level 3 — XO Communications
Level 3 — XO Communications
Centurylink — Verizon Business
Verizon Business — Sprint
Sprint — XO Communications

...
Path Vector Protocol

- Key idea: advertise the entire path
 - Distance vector: send *distance metric* per dest d
 - Path vector: send the *entire path* for each dest d
Inter-domain (Inter-ISP) Routing

AS2 must:

1. Learn destinations reachable through AS2
2. Propagate this reachability info to all routers in AS2
Path Vector Protocol

- **AS-path**: sequence of ASs a route traverses
 - Like distance vector, plus additional information
- Used for loop detection and to apply policy
- Default choice: route with fewest # of ASs

120.10.0.0/16: AS 2 → AS 5
130.10.0.0/16: AS2 → AS 3 → AS 4
110.10.0.0/16: AS 2 → AS 5
Routing Policy

- How should the ISP route the customer’s traffic to the destination?
BGP Relationships

Customer

Provider

Customer

Provider

Peer 1

Peer 2

Peer 3

Peers do not pay each other

Customer pay provider

route 1 \rightarrow 3

Customer

Provider

Customer
Peering/Interconnection Wars

- Peer
 - Reduce upstream costs
 - Improve end-to-end performance
 - May be the only way to connect to parts of the Internet

- Don’t Peer
 - You would rather have customers
 - Peers are often competitors
 - Peering agreements require periodic renegotiation

Peering struggles in the ISP world are extremely contentious, agreements are usually confidential
Hierarchical routing: Interconnected ASes

Interior Routers

Intra-AS Routing algorithm

Inter-AS Routing algorithm

Forwarding table
Building the forwarding table in router 2d, for path to AS4

Suppose router in AS2 receives a datagram destined for AS4.
Building the forwarding table in router 2d, for path to AS4

AS2 learns (Inter-AS) protocol that AS4 is reachable through AS3 (via gateway 2b).

Router 2d learns (intra-AS) protocol least cost path to 2b, on its right facing interface, R.
Building the forwarding table in router 2d, for path to AS4

AS2 learns (Inter-AS) protocol that AS4 is reachable through AS3 (via gateway 2b).

Router 2d learns (intra-AS) protocol least cost path to 2b, on its right facing interface, R.
Building the forwarding table in router 2d, for path to AS 5

Router 2d learns (intra-AS) protocol least cost path to 2b (on it’s right facing interface: R)

Router 2d installs forwarding table entry (AS5, R)

Is this sufficient to route from source to destination?

A. Yes
B. No
Internet inter-AS routing: BGP

- Question: why do we need iBGP?
 - OSPF does not include BGP policy info
 - Prevents routing loops within the AS

- iBGP updates do not trigger announcements
Internet inter-AS routing: BGP

Gateway routers also speak Intra-AS Protocol

Intra-AS Protocol

eBGP

iBGP

iBGP

iBGP

39
Internet inter-AS routing: BGP

• BGP (Border Gateway Protocol): The de facto inter-domain routing protocol

• BGP provides each AS a means to:
 – external BGP: obtain subnet reachability information from neighboring ASs.
 – internal BGP: propagate reachability information to all AS-internal routers.
 – determine “good” routes to other networks based on reachability information and policy.

• Allows a subnet to advertise its prefix to the rest of the Internet
Shortest AS Path != Shortest Path

4 hops
4 ASs

9 hops
2 ASs

Source

Destination
Hot Potato Routing: get rid of packets ASAP!

Best path: get it as close to the destination as we can.
Route Selection Summary

<table>
<thead>
<tr>
<th>Highest Local Preference</th>
<th>Enforce relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest AS Path</td>
<td>Traffic engineering</td>
</tr>
<tr>
<td>Lowest MED</td>
<td></td>
</tr>
<tr>
<td>Lowest IGP Cost to BGP Egress</td>
<td></td>
</tr>
</tbody>
</table>

| Lowest Router ID | When all else fails, break ties |
Path Vector Protocol

- **AS-path**: sequence of ASs a route traverses
 - Like distance vector, plus additional information
- Used for loop detection and to apply policy
- Default choice: route with fewest # of ASs

120.10.0.0/16: AS 2 → AS 5
130.10.0.0/16: AS 2 → AS 3 → AS 4
110.10.0.0/16: AS 2 → AS 5
BGP routing policy

- A, B, C are provider networks
- X, W, Y are customers of the providers
- X is dual-homed: attached to two networks (B and C)
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C
BGP routing policy

- A advertises path AW to B
- B advertises path BAW to X
Faulty redistribution can be dangerous!

- **AS7007 incident (April, 1997):**

 ![Diagram showing AS7007 incident](Image)
Summary

- As we’ve seen before (DNS), a hierarchy can help manage state storage constraints.
 - intra-AS routing: lots of info about local routes
 - inter-AS routing: less info about far away routes

- BGP: the inter-AS routing protocol for the Internet
 - Decisions often contractual

- BGP advertises AS prefixes, including:
 - entire path of ASes along the way
 - which border router heard the advertisement (Next Hop)
Additional Info: Inter-Domain Routing Challenges

• BGP4 is the only inter-domain routing protocol currently in use world-wide

• Issues?
 – Lack of security
 – Ease of misconfiguration
 – Poorly understood interaction between local policies
 – Poor convergence
 – Lack of appropriate information hiding
 – Non-determinism
 – Poor overload behavior
Additional Info:
Lots of research into how to fix this

• Security
 – BGPSEC, RPKI

• Misconfigurations, inflexible policy
 – SDN

• Policy Interactions
 – PoiRoot (root cause analysis)

• Convergence
 – Consensus Routing

• Inconsistent behavior
 – LIFEGUARD, among others
Additional Info
Why are these still issues?

• Backward compatibility
• Buy-in / incentives for operators
• Stubbornness

Very similar issues to IPv6 deployment
Additional Info:
Why Network Reliability Remains Hard

• Visibility
 – IP provides no built-in monitoring
 – Economic disincentives to share information publicly

• Control
 – Routing protocols optimize for policy, not reliability
 – Outage affecting your traffic may be caused by distant network

• Detecting, isolating and repairing network problems for Internet paths remains largely a slow, manual process
Net Neutrality

• how an ISP should share/allocation its resources
 – protecting innovation, free speech, and competition on the Internet

• Example: Comcast didn’t like BitTorrent, started injecting RSTs into user TCP streams.

• Scarier example: You like Netflix, but your ISP has their own video service. They degrade (or block) Netflix service unless you pay $$$.
Net Neutrality

Cases for:
• End to end principle
• Prevent customer extortion
• Allow for innovation

Google, Microsoft, Yahoo, Amazon, eBay

Cases against:
• ISP owns their network
• Asymmetric application bandwidth usage
• We shouldn’t legislate the Internet, it moves too fast

Cisco, many ISPs
Today

• We’ve seen the behavior of TCP/IP, and routers

• We’ve joked about the option of marking packets as “urgent”
 – As a lone user, your cries for urgency will likely be ignored by one or more ISPs on the Internet

• False implication: All traffic is treated equally.
Scenarios

• Things we can do at the network layer to:
 – Treat traffic differently
 – Improve congestion control

• You own a private network
 – Corporate network
 – Data center
 – ISP

• You want to provide better performance to:
 – More important services
 – Customers who pay more
Example 1: Corporate Phones

Which is more important?
Does one need more bandwidth?
Lower latency?

These are policy questions.
If the answer is “not equal”, what mechanisms do we use?
Example 2: ISP Customers

Can we differentiate between customers?
Example 2: ISP Customers

Can we differentiate between customers?

Common policy:
Pay more for faster service!
Recall Queueing

Router’s buffer.
Recall Queueing

Incoming rate is faster than outgoing link can support.
Recall Queueing

Router

Trash

Router’s buffer.

Incoming rate is faster than outgoing link can support.

Ugh. I can’t deal with this right now!
Basic Buffer Management

• FIFO + drop-tail
 – Simplest choice
 – Used widely in the Internet
• FIFO (first-in-first-out)
 – Traffic queued in first-come, first-served fashion
• Drop-tail
 – Arriving packets get dropped when queue is full

• Important distinction:
 – FIFO: queueing (scheduling) discipline
 – Drop-tail: drop policy
FIFO/Drop-Tail Problems

• Doesn’t differentiate between flows/users

• No policing: send more, get more service

• Leaves responsibility of congestion control completely to the edges (e.g., TCP)

• Synchronization: hosts react to same events
Quality of Service (QoS)

- QoS is a broad topic! We’re going to discuss:
 - Mechanism for differentiating users/flows
 - Mechanism for enforcing rate limits
 - Mechanism for prioritizing traffic
QoS: Quality of Service

- Drop-tail FIFO queue
 - Packets served in the order they arrive
 - ... and dropped if queue is full
- Random Early Detection (RED)
 - When the buffer is nearly full
 - ... drop or mark some packets to signal congestion
- Multiple classes of traffic
 - Separate FIFO queue for each flow or traffic class
 - ... with a packet scheduler to arbitrate between them
Packet Scheduling

- **Strict priority**
 - Assign an explicit rank to the queues
 - ... and serve the highest-priority backlogged queue

- **Weighted fair scheduling**
 - Interleave packets from different queues
 - ...in proportion to weights

- 50% red, 25% blue, 25% green
Differentiating Users

- If you control end hosts:
 - Mark packets in OS according to policy.

- Take advantage of IP’s class of service or options header fields
Differentiating Users

- If you control end hosts:
 - Mark packets in OS according to policy.

- Take advantage of IP’s class of service or options header fields

- Otherwise:
 - Introduce an intermediate device you trust.

(E.g., Cable modem)
Example 2: ISP Customers

Can we differentiate between customers?

Common policy:
Pay more for faster service!
Enforcing (Policing) Rate Limits

- Example: the red user gets at most 10 Mbps
- Solution: Token bucket
Enforcing (Policing) Rate Limits

• Example: the red user gets at most 10 Mbps
• Solution: Token bucket

If token(s) available, consume one and forward packet.
Enforcing (Policing) Rate Limits

• Example: the red user gets at most 10 Mbps
• Solution: Token bucket

If no token available, drop packet.
Enforcing (Policing) Rate Limits

- Example: the red user gets at most 10 Mbps
- Solution: Token bucket

Router adds tokens at specified rate. (10 Mbps)

No matter how fast user sends, limited by number of tokens, which replenish at controlled rate!

Bucket depth determines burst size.
Traffic Shaping

• Force traffic to conform with a profile
 – To avoid congesting downstream resources
 – To enforce a contract with the customer

• Leaky-bucket shaping
 – Can send at rate \(r \) and intermittently burst
 – Parameters: token rate \(r \) and bucket depth \(d \)

![Diagram illustrating leaky-bucket shaper](attachment:image.png)
Prioritizing

• Been to a theme park recently?
Prioritizing Traffic

• Designate multiple classes of traffic.
Prioritizing Traffic

• Weight queues differently.

Differentiated Buffers
Weighted Fair Queueing

• Suppose orange is more important than red.

• Policy: Always empty orange’s queue first.
 – Problem: Red might starve!

• Policy: Always allow 1 red packet for every N orange packets.
 – Ratio is known as weight.
FIFO/Drop-Tail Problems

- Doesn’t differentiate between flows/users
- No policing: send more, get more service
- Leaves responsibility of congestion control completely to the edges (e.g., TCP)
- Synchronization: hosts react to same events
Active Queue Management

• Design active router queue management to aid congestion control

• Why?
 – TCP at end hosts have limited vantage point
 – Routers see actual queue occupancy

• “Hint”: TCP will still do congestion control
 – We can try to help it out in the network!
Random Early Detection (RED)

- Goal: Prevent congestion before it’s a problem
- Assume hosts respond to lost packets
- Avoid window synchronization
 - Randomly mark packets
- Avoid bias against bursty traffic
RED Algorithm

- Maintain running average of queue length
- If $\text{avg} < \text{min}_{\text{th}}$ do nothing
 - Low queuing, send packets through
- If $\text{avg} > \text{max}_{\text{th}}$, drop packet
 - Protection from misbehaving sources
- Else drop/mark packet in a manner proportional to queue length
 - Notify sources of incipient congestion
RED

• Router queue:

Tail -> Head ->

• Mostly empty? Don’t drop.
RED

• Router queue:

Tail -> Head ->

• Mostly full? Drop new packets.
RED

• Router queue:

• In the middle? Drop proportionally to how full the queue is!
• Drop probability:

• In the middle? Drop proportionally to how full the queue is!
• **Drop Mark probability:**

Explicit congestion notification: Instead of dropping, set a header field, which gets returned to sender in ACK.

• Treat marked packets as "congestion events"
Explicit congestion notification (ECN)

- TCP deployments often implement network-assisted congestion control:
 - two bits in IP header (ToS field) marked by network router to indicate congestion
 - policy to determine marking chosen by network operator
Explicit congestion notification (ECN)

TCP deployments often implement *network-assisted* congestion control:

- congestion indication carried to destination
- destination sets ECE bit on ACK segment to notify sender of congestion
- involves both IP (IP header ECN bit marking) + TCP (TCP header C,E bit marking)