
CS 43: Computer Networks

TCP Congestion Control
October 29, 2020

Slides Courtesy: Kurose & Ross, K. Webb, D. Choffnes

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 2

Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!

Slide 3

Application is the
boss

Practical Reliability Questions

• What does connection establishment look like?
• How should we choose timeout values?
• How do we choose sequence numbers?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 4

Practical Reliability Questions

• What does connection establishment look like?
• How should we choose timeout values?
• How do we choose sequence numbers?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 5

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 6

With pipelined data segments What should
the sender keep track off? How about the
receiver?

Slide 7

Data-3
Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Now what?

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

Windowing (Sliding Window)

• At the sender:
– What’s been ACKed
– What’s still outstanding
– What to send next

• At the receiver:
– Go-back-N

• Highest sequence number received so far.

– (Selective repeat)
• Which sequence numbers received so far.
• Buffered data.

Slide 8

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

Recall: ARQ Protocol: Go-Back-N

Slide 9

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-back-N

• At the sender:

• At the receiver:
– Keep track of largest sequence number seen.
– If it receives ANYTHING, sends back ACK for largest

sequence number seen so far. (Cumulative ACK)

Slide 10

Cumulative Acknowledgements
An ACK for sequence number N implies that all data prior to N
has been received.

Slide 11

Time

Sender Receiver
Data-0

…

Data-1500Data-3000

Ack-1500

Data-4500

Ack-3000

Ack-4500

Data-6000Data-7500

Cumulative Acknowledgements
An ACK for sequence number N implies that all data prior to N has been received.

Slide 12

Time

Sender Receiver
Data-0

…

Data-1500Data-3000

Ack-1500

Data-4500

Ack-3000

Ack-4500

Data-6000Data-7500

Time

Sender Receiver

Data-0

…

Data-1500

Data-3000

?

What should we do with an out-of-order
segment at the receiver?

A. Drop it.

B. Save it and ACK it.

C. Save it, don’t ACK it.

D. Something else (explain).

Slide 13

Time

Sender Receiver

Data-0

…

Data-1500

Data-3000

?

Selective Repeat

Slide 14

If you were building a transport protocol,
which would you use?

A. Go-back-N

B. Selective repeat

C. Something else (explain)

Slide 15

Sliding window

• How many bytes to pipeline?
• How big do we make that window?
– Too small: link is under-utilized
– Too large: congestion, packets dropped
– Other concerns: fairness

Slide 16

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 17

Discussion: Why do we need rate control ?

A. to help the global network (core routers, and other
end-hosts)

B. to help the receiver
C. to help the sender
D. some other reason

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Slide 18

Rate Control

Flow Control
• Don’t send so fast that we

overload the receiver.

• Rate directly negotiated
between one pair of hosts
(the sender and receiver).

Congestion Control
• Don’t send so fast that we

overload the network.

• Rate inferred by sender in
response to “congestion
events.”

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Slide 19

Flow Control

• Don’t send so fast that we overload the receiver.
• Rate directly negotiated between one pair of hosts

(the sender and receiver).

Slide 20

Flow Control

• Example scenarios:

Fast server Low-power device

Problem: Sender can send at a high rate. Network can
deliver at a high rate. The receiver is drowning in data.

Multiple fast servers Fast server
Slide 21

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Slide 22

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Stop!

Slide 23

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Ack. rwnd: 4

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

rwnd

Slide 24

Congestion

• Flow control is (relatively) easy. The receiver knows
how much space it has.

• What about the network devices?

Slide 25

Congestion

Router

Router’s buffer.

Slide 26

Congestion

Router

Router’s buffer.

Incoming rate is faster than
outgoing link can support.

Slide 27

Trash

Congestion

Router

Router’s buffer.

Incoming rate is faster than
outgoing link can support.

Ugh. I so
can’t deal

with this right
now!

Slide 28

What’s the worst that can happen?

A. This is no problem. Senders just keep transmitting, and
it’ll all work out.

B. There will be retransmissions, but the network will still
perform without much trouble.

C. Retransmissions will become very frequent, causing a
serious loss of efficiency.

D. The network will become completely unusable.

Slide 29

Congestion Collapse

…

…

…

…

Link A Link B

Slide 30

Congestion Collapse

…

…

…

…

Link A Link B

One sender starts,
but there’s still
capacity at link A.

S1

Slide 31

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2
Another sender
starts up. Link A is
showing slight delay,
but still doing ok.

Slide 32

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Unrelated traffic
passes through and
congests link B.

Slide 33

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2
S2’s traffic is being dropped at
Link B, so it starts
retransmitting on top of what
it was sending.

This is very bad. S2 is now sending lots of traffic over
link A that has no hope of crossing link B. Slide 34

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Increased traffic from S2
causes Link A to become
congested. S1 starts
retransmitting.

Slide 35

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Slide 36

What problems do we have without
congestion control?

A. Affects Latency
B. Affects loss rate
C. Affects network capacity
D. Affects application layer performance
E. More than one of the above

Slide 37

Effects of congestion: what happens to
performance when we increase the load?

Slide 39

Capacity

Offered Load (packets/sec)

G
oo

dp
ut

 (p
ac

ke
ts

/s
ec

) A. Linear, x = y
B. Linear 2x = y
C. Exponential growth
D. Something else

Goodput: Packets through the network that are not retransmissions
Offered Load: All packets in the network

Ideal Performance curve?

The Danger of Increasing Load

• Knee – point after which
– Throughput increases

very slow
– Delay increases fast

• Cliff – point after which
– Throughput à 0

– Delay à∞

Congestion
Collapse

Load

Load

Th
ro

ug
hp

ut
De

la
y

Knee Cliff

Ideal point

Slide 42

Cong. Control vs. Cong. Avoidance

43

Congestion
Collapse

Go
od

pu
t

Knee Cliff

Load

Congestion Avoidance:
Stay left of the knee

Congestion Control:
Stay left of the cliff

TCP Congestion Control: details

• sender limits transmission:

• cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
• send cwnd bytes, wait RTT

for ACKS, then send more
bytes

last byte
ACKed

sent, not-yet ACKed
(“in-flight”)

last byte
sent

cwnd

cwnd≤LastByteSent-
LastByteAcked

sender sequence number space

~~rate cwnd

RTT
bytes/sec

Slide 44

How should we set cwnd?

A. We should keep raising it until a “congestion event”,
then back off slightly until we notice no more events.

B. We should raise it until a “congestion event”, then go
back to 0 and start raising it again.

C. We should raise it until a “congestion event”, then go
back to a median value and start raising it again.

D. We should send as fast as possible at all times.

Slide 45

What is a “congestion event” from the
perspective of a sender in TCP?

A. A segment loss

B. Receiving duplicate acknowledgement(s)

C. A retransmission timeout firing

D. Some subset of the above

E. All of the above

Slide 47

What we care about is segment
loss, and both B and C give us a
way to know that a segment loss
has occurred.

TCP Congestion Control Phases

• Slow start
– Sender has no idea of network’s congestion
– Start conservatively, increase rate quickly

• Congestion avoidance
– Increase rate slowly
– Back off when congestion occurs

• How much depends on TCP version

Slide 49

TCP Slow Start

• When connection begins,
increase rate exponentially
until first loss event:
§ initially cwnd = 1 MSS
§ double cwnd every RTT
§ done by incrementing cwnd

for every ACK received

• Summary: initial rate is
slow but ramps up
exponentially fast

• When do we stop?

Host A

one segment

R
TT

Host B

time

two segments

four segments

Slide 50

TCP Slow Start

• When do we stop?

• Initially
– On a congestion event

• Later
– On a congestion event
– When we cross a

previously-determined
threshold

Host A

one segment

R
TT

Host B

time

two segments

four segments

Slide 51

TCP Congestion Avoidance

• ssthresh: Threshold where slow start ends
– initially unlimited

• In congestion avoidance, instead of doubling,
increase cwnd by one MSS every RTT.
– Increase cwnd by MSS/cwnd bytes for each ACK
– Back off on congestion event

Slide 52

TCP: Big picture

Time

cw
nd

Timeout

Slow Start

Congestion
Avoidance

ssthresh

Slide 53

Congestion
Event

Congestion
Event

ssthresh:
cwnd/2

Congestion
Avoidance

Slow Start
Slow Start

We can determine that a packet was lost two
different ways: via 3 duplicate ACKS, or via a
timeout. We should…

A. Treat these events differently.

B. Treat these events the same.

(For discussion: Is one of these events worse than the
other, or do they represent equally bad scenarios? If
they’re not equal, which is worse?)

Slide 54

Detecting, Reacting to Loss (Tahoe vs. Reno)

Loss indicated by timeout:
Tahoe and Reno:
– cwnd set to 1 MSS;
– window then grows

exponentially (as in slow
start) to threshold,

– then grows linearly

Loss indicated by 3 duplicate
ACKs:
• Tahoe:
– cwnd set to 1 MSS;
– window grows

exponentially (as in slow
start) to threshold

– then grows linearly

• Reno
– cwnd is cut in half window

then grows linearly
– dup ACKs indicate network

capable of delivering some
segments

Slide 55

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to
1/2 of its value before
timeout.

Implementation:
• variable ssthresh
• on loss event, ssthresh is

set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to congestion
avoidance

Slide 56

Fast Retransmit and Fast Recovery

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout

Slide 57

Additive Increase, Multiplicative Decrease
(AIMD)

• approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs
• additive increase: increase cwnd by 1 MSS (Maximum

Segment Size) every RTT until loss detected
• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

TC
P

se
nd

er

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

link
capacity

Slide 58

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to
1/2 of its value before
timeout.

Implementation:
• variable ssthresh
• on loss event, ssthresh is

set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Slide 59

TCP Variants

• There are tons of them!

• Tahoe, Reno, New Reno, Vegas, Hybla, BIC, CUBIC,
Westwood, Compound TCP, DCTCP, YeAH-TCP, …

• Each tweaks and adjusts the response to congestion.

• Why not just find a cwnd value that works, and stick
with it?

Slide 60

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP Fairness

TCP connection 2

Slide 61

TCP Fairness

Time

Flow
Rates

Two competing sessions:
• additive increase gives slope of 1, as throughput increases
• multiplicative decrease, decreases throughput proportionally

Slide 62

Since TCP is fair, does this mean we no longer
have to worry about bandwidth hogging?

A. Yep, solved it!

B. No, we can still game the system.

If you wanted to cheat to get
extra traffic through, how
might you do it?

Slide 63

Fairness (more)

Fairness and UDP
• Multimedia apps often do

not use TCP
– do not want rate

throttled by
congestion control

• Instead use UDP:
– send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP connections
• Application can open multiple

parallel connections between
two hosts

• Web browsers do this
• e.g., link of rate R with 9

existing connections:
– new app asks for 1 TCP, gets

rate R/10
– new app asks for 11 TCPs,

gets R/2

Slide 64

Summary

• TCP has mechanisms to control sending rate:
– Flow control: don’t overload receiver
– Congestion control: don’t overload network

• min(rwnd, cwnd) determines window size for TCP
segment pipelining (typically cwnd)

• AIMD: additive increase, multiplicative decrease

Slide 65

Additional Slides

(not assessable)

Slide 66

TCP CUBIC Example

• Less wasted bandwidth due to fast ramp up
• Stable region and slow acceleration help maintain fairness

– Fast ramp up is more aggressive than additive increase
– To be fair to Tahoe/Reno, CUBIC needs to be less aggressive

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

Fast ramp
up

Stable
Region

Slowly accelerate to
probe for bandwidth

Slide 67

Synchronization of Flows

• Ideal bandwidth sharing

cw
nd

cw
nd

cw
nd

¨ Oscillating, but high overall
utilization

¨ In reality, flows synchronize

One flow causes
all flows to drop

packets

Periodic lulls of
low utilization

Slide 68

Utilization and Fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Max
throughput
for flow 2

Zero
throughput
for flow 1 Max

throughput
for flow 1

Zero
throughput
for flow 2

Less than full
utilization

More than full
utilization

(congestion)
Ideal point

• Max efficiency
• Perfect fairness

Equal
throughput
(fairness)

Slide 69

Multiplicative Increase, Additive Decrease

• Not stable!
• Veers away from fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Slide 70

Additive Increase, Additive Decrease

• Stable
• But does not

converge to fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Slide 71

Multiplicative Increase, Multiplicative
Decrease

• Stable
• But does not

converge to fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Slide 72

Additive Increase, Multiplicative Decrease

• Converges to stable
and fair cycle

• Symmetric around
y=x

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Slide 73

TCP: Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion
Avoidance

ssthresh

Slide 74

