CS 43: Computer Networks

TCP Connections and Flow Control
October 27, 2020

“Boo”lean Logic

|
Trick OR Treat Trick AND Treat Trick XOR Treat

‘ B
Trick NOR Treat Trick NAND Treat Trick XNOR Treat

) (€05 (€D

Slide 3

ransmission Control Protocol

Reliable, in-order, bi-directional byte streams
— Port numbers for demultiplexing
— Flow control

— Congestion control, approximate fairness

0 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Receive Window
Checksum Urgent Pointer
Options

20 bytes
header

(UDP was
8!)

ransmission Control Protocol

* Important TCP flags (1 bit each)

— — ACK — acknowledge received data (ACK valid or not)

— — SYN — synchronization, used for connection setup

FIN — finish, used to tear down connection

0 4 LAGS 16 31

HLen NotUsed|U|A|P|R]|S|F Receive Window

URG RESET, SYN, FIN

PUSH Slide 4

Practical Reliability Questions

What does connection establishment look like?
How do we choose sequence numbers?

How do the sender and receiver keep track of
outstanding pipelined segments?

How should we choose timeout values?
How many segments should be pipelined?

Practical Reliability Questions

What does connection establishment look like?

How should we choose timeout values?

How do the sender and receiver keep track of
outstanding pipelined segments?

How do we choose sequence numbers?

How many segments should be pipelined?

Slide 6

m o O wm >

A connection...
Requires stored state at two hosts.

Requires stored state within the network.
Establishes a path between two hosts.

1&3
1,2 &3

2&3

Connections

* |n TCP, hosts must establish a connection prior to
communicating.

* Exchange initial protocol state.
— sequence #s to use.
— maximum segment size (MSS)
— Initial window sizes, etc. (several parameters)

Slide 8

hree Way Handshake

. bind(),
| Cller?t- Server listen()
connect() Active participant Passive participant
SYN_SENT| SYN <Seqcs LISTEN
9

ESTABLISHED €~

connect() returns
eventually, send()

—> | ESTABLISHED

< > accept() returns

Both sides agree on connection.
< >

Slide 9

Connection Teardown

* Orderly release by sender and receiver when done

— Delivers all pending data and “hangs up”

* Cleans up state in sender and receiver

* Each side may terminate independently

Slide 10

close()

close() returns

TCP Connection Teardown

Initiator Receiver
Active participant Passive participant
ESTABLISHED ESTABLISHED
connection connection
FIN_WAIT 1 FIN
active_close CLOSE WAIT
AC\(passive_close
TIME_WAIT ACK
CLOSED
CLOSED

close() returns

Both sides agree on closing the connection.
< >

Slide 11

Practical Reliability Questions

What does connection establishment look like?

ow do we choose sequence numbers?
ow should we choose timeout values?
ow do the sender and receiver keep track of

outstanding pipelined segments?

How many segments should be pipelined?

Slide 12

Example RTT Estimation (Smoothing)

350 ~

300

N
0
o

—

—¢

>

—
-
——
—

RTT (milliseconds)

200

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—o— SampleRTT —8— Estimated RTT

Slide 13

CP Timeout Value

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “Safety marginn

Slide 14

Round Trip Time Estimation:
Exponentially Weighted Moving Average (EWMA)

K

Sample p\C\k

EstimatedRTT = (1 — a) * EstimatedRTT + a * SampleRTT
— ais usually 1/8.

In words current estimate is a blend of:
» 7/8 of the previous estimate
e 1/8 of the new sample.

DevRTT = (1 —B) * DevRTT + B * | SampleRTT — EstimatedRTT |
 Bisusually1/4

15

Example RTT Estimation

* Suppose EstimateRTT =64, Dev=28
e Latest sample: 120

New estimate=7/8 *64+1/8 * 120=56+15=71
Newdev=3/4*8+1/4*|120-71|=6+12=18

* Another sample: 400
New estimate=7/8 * 71+ 1/8 *400=62+50=112
Newdev=3/4*18+1/4* | 400-112 | =13 +72=85

Slide 16

Practical Reliability Questions

What does connection establishment look like?
How do we choose sequence numbers?

How should we choose timeout values?

How do the sender and receiver keep track of
outstanding pipelined segments?

How many segments should be pipelined?

Slide 17

Sliding window

* How many bytes to pipeline?
* How big do we make that window?
— Too small: link is under-utilized

— Too large: congestion, packets dropped
— Other concerns: fairness

Discussion: Why do we need rate control ?

. to help the global network (core routers, and other
end-hosts)

. to help the receiver
. to help the sender
. some other reason

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Lecture 19 - Slide 19

Rate Control

Flow Control Congestion Control

 Don’t send so fast that we Don’t send so fast that we
overload the receiver. overload the network.

* Rate directly negotiated e Rate inferred by sender in
between one pair of hosts response to “congestion
(the sender and receiver). events.”

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Flow Control

e Don’t send so fast that we overload the receiver.

* Rate directly negotiated between one pair of hosts
(the sender and receiver).

Lecture 19 - Slide 21

Flow Control

Problem: Sender can send at a high rate. Network can
deliver at a high rate. The receiver is drowning in data.

 Example scenarios:

Fast server Low-power device

: :‘ -
O o
o= p= —

Multiple fast servers Fastserver . .o <igeoo

Flow Control

o = ||
0

i

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 23

Flow Control

o = ||
0

i

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 24

Flow Control

= App calls recv()
=) =
(@)

Fast server Low-power device

e

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 25

o —

i

Fast server

Flow Control

[é} App calls recv()
(@)

Low-power device

Finite socket buffer

space at the receiver.

Lecture 19 - Slide 26

Flow Control

o = ||
0

i

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 27

Flow Control

—
ol = = |
(@)
i
Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 28

Flow Control

—1 =
—1
o—IP—

L
Fast server

[

Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 29

Slide 30

CP Receive Window (rwnd)

Source Port Destination Port
Sequence Number

Acknowledgement Number

Flags Receive Window
Checksum Urgent Pointer
Options

Flow Control

e Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 31

Flow Control

e Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 32

Flow Control

Sender never sends more than rwnd.

=

Fast server Low-power device

Ack. rwnd: 4 Finite socket buffer
mln(rwnd cwnd) space at the receiver.
last byte ‘ last byte
ACKed sent, not- sent
yet ACKed

(“in—flight") Lecture 19 - Slide 33

