
CS 43: Computer Networks

TCP Connections and Flow Control
October 27, 2020

Slide 2

“Boo”lean Logic

Courtesy: Kevin Webb

Options

Transmission Control Protocol
Reliable, in-order, bi-directional byte streams
– Port numbers for demultiplexing
– Flow control
– Congestion control, approximate fairness

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 3

20 bytes
header

(UDP was
8!)

Transmission Control Protocol

• Important TCP flags (1 bit each)
– ACK – acknowledge received data (ACK valid or not)
– SYN – synchronization, used for connection setup
– FIN – finish, used to tear down connection

0 16 314

Receive WindowNot Used|U|A|P|R|S|FHLen
FLAGS

Slide 4

URG

PUSH

RESET, SYN, FIN

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How should we choose timeout values?
• How many segments should be pipelined?

Slide 5

Practical Reliability Questions

• What does connection establishment look like?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How do we choose sequence numbers?
• How many segments should be pipelined?

Slide 6

A connection…

1. Requires stored state at two hosts.
2. Requires stored state within the network.
3. Establishes a path between two hosts.

A. 1
B. 1 & 3
C. 1, 2 & 3
D. 2
E. 2 & 3

Slide 7

Connections

• In TCP, hosts must establish a connection prior to
communicating.

• Exchange initial protocol state.
– sequence #s to use.
– maximum segment size (MSS)
– Initial window sizes, etc. (several parameters)

Slide 8

Three Way Handshake
Client

Active participant
Server

Passive participant
SYN <SeqC>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqS+1>

+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

bind(),
listen()

accept()connect()

accept() returns

connect() returns
eventually, send()

Both sides agree on connection.

Slide 9

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• Each side may terminate independently

Slide 10

Initiator
Active participant

Receiver
Passive participant

FIN

ACK

ACK

ESTABLISHED
connection

ESTABLISHED
connection

CLOSE_WAIT
passive_close

CLOSED

close() returns

Both sides agree on closing the connection.

Slide 11

FIN

FIN_WAIT_1
active_close

FIN_WAIT_2

TIME_WAIT

CLOSED

LAST_ACK close()

close()

close() returns

TCP Connection Teardown

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 12

Example RTT Estimation (Smoothing)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T (

mi
llis

ec
on

ds
)

SampleRTT Estimated RTT

Slide 13

TCP Timeout Value

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Slide 14

Round Trip Time Estimation:
Exponentially Weighted Moving Average (EWMA)

EstimatedRTT = (1 – a) * EstimatedRTT + a * SampleRTT
– a is usually 1/8.

In words current estimate is a blend of:
• 7/8 of the previous estimate
• 1/8 of the new sample.

DevRTT = (1 – B) * DevRTT + B * | SampleRTT – EstimatedRTT |
• B is usually 1/4

15

Data

ACKSample

Example RTT Estimation

• Suppose EstimateRTT = 64, Dev = 8
• Latest sample: 120

New estimate = 7/8 * 64 + 1/8 * 120 = 56 + 15= 71
New dev = 3/4 * 8 + 1/4 * | 120 - 71 | = 6 + 12 = 18

• Another sample: 400
New estimate = 7/8 * 71 + 1/8 * 400 = 62 + 50 = 112
New dev = 3/4 * 18 + 1/4 * | 400 - 112 | = 13 + 72 = 85

Slide 16

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 17

Sliding window

• How many bytes to pipeline?
• How big do we make that window?
– Too small: link is under-utilized
– Too large: congestion, packets dropped
– Other concerns: fairness

Lecture 19 - Slide 18

Discussion: Why do we need rate control ?

A. to help the global network (core routers, and other
end-hosts)

B. to help the receiver
C. to help the sender
D. some other reason

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Lecture 19 - Slide 19

Rate Control

Flow Control
• Don’t send so fast that we

overload the receiver.

• Rate directly negotiated
between one pair of hosts
(the sender and receiver).

Congestion Control
• Don’t send so fast that we

overload the network.

• Rate inferred by sender in
response to “congestion
events.”

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Lecture 19 - Slide 20

Flow Control

• Don’t send so fast that we overload the receiver.
• Rate directly negotiated between one pair of hosts

(the sender and receiver).

Lecture 19 - Slide 21

Flow Control

• Example scenarios:

Fast server Low-power device

Problem: Sender can send at a high rate. Network can
deliver at a high rate. The receiver is drowning in data.

Multiple fast servers Fast serverLecture 19 - Slide 22

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 23

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 24

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

App calls recv()

Lecture 19 - Slide 25

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

App calls recv()

Lecture 19 - Slide 26

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 27

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 28

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Stop!

Lecture 19 - Slide 29

Options

TCP Receive Window (rwnd)

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 30

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 31

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Lecture 19 - Slide 32

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Ack. rwnd: 4

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

min(rwnd, cwnd)

Lecture 19 - Slide 33

