CS 43: Computer Networks

Reliable Transport and TCP October 22, 2020

Transport Layer

Today

- Principles of reliability
- Class of protocols: Automatic Repeat Requests

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Transport Layer perspective

Today

- Principles of reliability
 - The Two Generals Problem
- Automatic Repeat Requests
 - Stop and Wait
 - Timeouts and Losses
 - Pipelined Transmission

- Two army divisions (blue) surround enemy (red)
 - Each division led by a general
 - Both must agree when to simultaneously attack
 - If either side attacks alone, defeat
- Generals can only communicate via messengers
 - Messengers may get captured (unreliable channel)

- How to coordinate?
 - Send messenger: "Attack at dawn"
 - What if messenger doesn't make it?

- How to be sure messenger made it?
 - Send acknowledgment: "I delivered message"

In the "two generals problem", can the two armies reliably coordinate their attack? (using what we just discussed)

- A. Yes (explain how)
- B. No (explain why not)

- Result
 - Can't create perfect channel out of faulty one
 - <u>Can only increase probability of success</u>

Engineering

- Concerns
 - Message corruption
 - Message duplication
 - Message loss
 - Message reordering
 - Performance

- Our toolbox
 - Checksums
 - Timeouts
 - Acks & Nacks
 - Sequence numbering
 - Pipelining

Engineering

- Concerns
 - Message corruption
 - Message duplication
 - Message loss
 - Message reordering
 - Performance

- Our toolbox
 - Checksums
 - Timeouts
 - Acks & Nacks
 - Sequence numbering
 - Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We'll briefly talk about alternatives at the end.)

Automatic Repeat Request (ARQ)

- Intuitively, ARQ protocols act like you would when using a cell phone with bad reception.
 - Receiver: Message garbled? Ask to repeat.
 - Sender: Didn't hear a response? Speak again.
- Refer to book for building state machines.
 - We'll look at TCP's states soon

ARQ Broad Classifications

1. Stop-and-wait

Stop and Wait

Stop and Wait

Sender sends data and waits till they get the response message from the receiver.

Buffer data, and don't send till response received

Stop and Wait

- Up next: concrete problems and mechanisms to solve them.
- These mechanisms will build upon each other
- Questions?

Corruption?

Could we do this with just ACKs or just NACKs?

Error detection mechanism: checksum

- Data good receiver sends back ACK
- Data corrupt receiver sends back NACK
- A. No, we need them both.
- B. Yes, we could do without one of them, but we'd need some other mechanism.
- C. Yes, we could get by without one of them.

Could we do this with just ACKs or just NACKs?

- With only ACK, we could get by with a timeout.
- With only NACK, we couldn't advance (no good).
- A. No, we need them both.
- B. Yes, we could do without one of them, but we'd need some other mechanism.
- C. Yes, we could get by without one of them.

• Sender starts a clock. If no response, retry.

• Probably not a great idea for handling corruption, but it works.

• Timeouts help us handle message losses too!

 Timeouts help us handle message losses too! Adding timeouts might create new problems for us to worry about. How many? Examples?

- A. No new problems (why not?)
- B. One new problem (which is..)
- C. Two new problems (which are..)
- D. More than two new problems (which are..)

Adding timeouts might create new problems for us to worry about. How many? Examples? Sender Receiver

- A. No new problems (why not?)
- One new problem (which is..) Β.
- C. Two new problems (which are..)
- D. More than two new problems (which are..)

Data

ACK

Data

ACK

Sequence Numbering

Sender

 Add a monotonically increasing label to each msg

Receiver

- Ignore messages with numbers we've seen before
- When pipelining (a few slides from now)
 - Detect gaps in the sequence
 (e.g., 1,2,4,5)

Pipelined Transmission

Keep multiple segments "in flight"

- Allows sender to make efficient use of the link
- Sequence numbers ensure receiver can distinguish segments

Pipelined Transmission

Keep multiple segments "in flight"

- Allows sender to make efficient use of the link
- Sequence numbers ensure receiver can distinguish segments

ARQ Broad Classifications

- 1. Stop-and-wait
- 2. Go-back-N

Time

• Retransmit from point of loss

- Segments between loss event and retransmission are ignored
- "Go-back-N" if a timeout event occurs

- Retransmit from point of loss
 - Segments between loss
 event and retransmission are
 ignored
 - "Go-back-N" if a timeout event occurs

Time

- Receiver ACKs each segment individually (not cumulative)
- Sender only resends those not ACKed

- Receiver ACKs each segment individually (not cumulative)
- Sender only resends those not ACKed

ARQ Alternatives

- Can't afford the RTT's or timeouts?
- When?
 - Broadcasting, with lots of receivers
 - Very lossy or long-delay channels (e.g., space)
- Use redundancy send more data
 - Simple form: send the same message N times
 - More efficient: use "erasure coding"
 - For example, encode your data in 10 pieces such that the receiver can piece it together with any subset of size 8.

Transmission Control Protocol

Reliable, in-order, bi-directional byte streams

- Port numbers for demultiplexing
- Flow control
- Congestion control, approximate fairness

0	4	16			
		Source Port	Destination Port		
Sequence Number					
Acknowledgement Number					
HLen		Flags	Receive Window		
Checksum Urgent Pointer					
Options					

Transmission Control Protocol

Reliable, in-order, bi-directional byte streams

- Port numbers for demultiplexing
- Flow control
- Congestion control, approximate fairness

0	4	16		
		Source Port	Destination Port	
Sequence Number				
Acknowledgement Number				
HLen		Flags	Receive Window	
Checksum Urgent Pointer				
Options				

Transmission Control Protocol

- Important TCP flags (1 bit each)
 - ACK acknowledge received data
 - SYN synchronization, used for connection setup

FIN – finish, used to tear down connection

Practical Reliability Questions

- What does connection establishment look like?
- How do we choose sequence numbers?
- How do the sender and receiver keep track of outstanding pipelined segments?
- How should we choose timeout values?
- How many segments should be pipelined?

Practical Reliability Questions

- What does connection establishment look like?
- How should we choose timeout values?
- How do the sender and receiver keep track of outstanding pipelined segments?
- How do we choose sequence numbers?
- How many segments should be pipelined?

A connection...

- 1. Requires stored state at two hosts.
- 2. Requires stored state within the network.
- 3. Establishes a path between two hosts.
- A. 1
- B. 1&3
- C. 1, 2 & 3
- D. 2
- E. 2&3

A connection...

- 1. Requires stored state at two hosts.
- 2. Requires stored state within the network.
- 3. Establishes a path between two hosts.

A. 1

B. 1&3

C. 1, 2 & 3

- D. 2
- E. 2&3

Connections

- In TCP, hosts must establish a connection prior to communicating.
- Exchange initial protocol state.
 - sequence #s to use.
 - maximum segment size
 - Initial window sizes, etc. (several parameters)

Three Way Handshake

• Each side:

- Notifies the other of starting sequence number
- ACKs the other side's starting sequence number

Three Way Handshake

Both sides agree on connection.

Piggybacking

Initiator/Receiver

- Assumed distinct "sender" and "receiver" roles
- In reality, usually both sides of a connection send some data
- request/response is a common pattern

Initiator Active participant **Receiver** Passive participant

Connection Teardown

- Orderly release by sender and receiver when done
 Delivers all pending data and "hangs up"
- Cleans up state in sender and receiver
- Each side may terminate independently

TCP Connection Teardown

Both sides agree on closing the connection.

TCP Connection Teardown

Both sides agree on closing the connection.

The TIME_WAIT State

- We wait 2*MSL (maximum segment lifetime) before completing the close. The MSL is arbitrary (usually 60 sec)
- ACK might have been lost and so FIN will be resent
 Could interfere with a subsequent connection
- This is why we used SO_REUSEADDR socket option in lab 2
 - Says to skip this waiting step and immediately abort the connection

Practical Reliability Questions

- What does connection establishment look like?
- How do we choose sequence numbers?
- How should we choose timeout values?
- How do the sender and receiver keep track of outstanding pipelined segments?
- How many segments should be pipelined?

How should we choose the initial sequence number?

- A. Start from zero
- B. Start from one

What can go wrong with sequence numbers? -How they're chosen? -In the course of using them?

- C. Start from a random number
- D. Start from some other value (such as...?)

Sequencing

- Initial sequence numbers (ISN) chosen at random
 - Does not start at 0 or 1 (anymore).
 - Helps to prevent against forgery attacks.
- TCP sequences bytes rather than segments
 - Example: if we're sending 1500-byte segments
 - Randomly choose ISN (suppose we picked 1150)
 - First segment (sized 1500) would use number 1150
 - Next would use 2650

Sequence Prediction Attack (1996)

Practical Reliability Questions

- What does connection establishment look like?
- How do we choose sequence numbers?
- How should we choose timeout values?
- How do the sender and receiver keep track of outstanding pipelined segments?
- How many segments should be pipelined?

Timeouts

- How long should we wait before timing out and retransmitting a segment?
- Too short: needless retransmissions
- Too long: slow reaction to losses
- Should be (a little bit) longer than the RTT

Retransmission Time Outs (RTO)

• Problem: time-out is linked to round trip time

Estimating RTT

- Problem: RTT changes over time
 - Routers buffer packets in queues
 - Queue lengths vary
 - Receiver may have varying load
- Sender takes measurements
 - Use statistics to decide future timeouts for sends
 - Estimate RTT and variance
- Apply "smoothing" to account for changes

Round Trip Time Estimation: Exponentially Weighted Moving Average (EWMA)

EstimatedRTT = (1 - a) * EstimatedRTT + a * SampleRTT

- a is usually 1/8.

In words current estimate is a blend of:

- 7/8 of the previous estimate
- 1/8 of the new sample.

DevRTT = (1 - B) * DevRTT + B * | SampleRTT - EstimatedRTT |

• B is usually 1/4

Example RTT Estimation

- Suppose EstimateRTT = 64, Dev = 8
- Latest sample: 120

New estimate = 7/8 * 64 + 1/8 * 120 = 56 + 15 = 71New dev = 3/4 * 8 + 1/4 * | 120 - 71 | = 6 + 12 = 18

• Another sample: 400

New estimate = 7/8 * 71 + 1/8 * 400 = 62 + 50 = 112New dev = 3/4 * 18 + 1/4 * | 400 - 112 | = 13 + 72 = 85

Example RTT Estimation (Smoothing)

TCP Timeout Value

####